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Abstract—Buildings are candidates for providing flexible de-
mand due to their high consumption and inherent thermal
inertia. In the future, flexible demand side reserves may also
help to relax the expected higher reserve requirements of the
grid due to the presence of renewables. However, this flexible
demand might be vulnerable to price signals, as simultaneous
increase in consumption by multiple buildings due to low (high)
energy (reserves) price periods might cause congestion in dis-
tribution grids. In order to integrate congestion free energy
and reserve provision from buildings, this paper presents two
benchmark pricing methodologies: (1) distribution locational
marginal prices (DLMP) and (2) iterative DLMP (iDLMP).
Both methods deploy convex optimization to obtain an optimal
solution of the original problem. Using dual decomposition, a
settlement scheme, which efficiently distributes the congestion
cost among involved participants is also presented. Case studies
are performed on a benchmark distribution system along with the
National Energy Market Singapore’s (NEMS) price framework.
The results prove that both methods optimally remove congestion
from distribution grids and have potential to be integrated into
the theoretical framework of liberalized markets. Furthermore,
as a comparison, it is shown that the DLMP based prices out
performs existing pricing structures of the distribution grid.
Hence, using this scheme, the DSO can evaluate existing tariffs
and introduce incentives for price responsive demands. However,
to support these methods, the high requirement for information
sharing in the DLMP method and/or communication technology
infrastructure for calculating iDLMPs must exist in the future
grid.

Index Terms—Flexible Demand, Buildings, Congestion Man-
agement, Convex Optimization, Distribution Grid.

I. I NTRODUCTION

Demand flexibility aims to help power systems become
more competitive, economical and reliable [1], [2]. Further-
more, flexible demand has also shown the potential to mitigate
the variability of renewable energies [3], [4]. Hence, it is
expected in the near future that flexible demand can play an
integral role in efficiently decarbonizing the power system.

Buildings’ share of the worldwide energy usage is al-
most40% [5], with approximately half of it being used in their
heating, ventilation and air conditioning (HVAC) systems [6].
An energy intensive nation, such as Singapore, observes
electricity consumption shares of42%, 37% and15% in its
industrial, commercial and residential sector, respectively [7].
Notably in Singapore, due to its hot and humid climate,
annual energy consumption from space conditioning of the
commercial sector almost amounts to7 TWh (52% of the
total) [8]. Hence in principle, commercial buildings have the
potential to become a huge source of flexibility [9]. Especially,
with the support of their thermal inertia, the temperature is

allowed to change slowly even when the power consumption
is changed rapidly [10].

However, as pointed out in [11]–[13], there are many chal-
lenges which exist for integrating flexibility from commercial
buildings into the power system. Among many, the two most
important challenges exist in the form of (1) obtaining reliable
and controllable building models and (2) providing a smooth
framework to achieve a high consensus between the power
system and the building operation. Moreover, this integration
should be performed considering practical constraints such
as the requirement of additional communication technology
infrastructure.

A great deal of work had been dedicated for develop-
ing building simulation tools [14]. These building models
provide understanding of building operations as well as
annual/monthly/weekly energy consumption. For obtaining
quantifiable demand response (DR) potential of commercial
buildings, control-oriented building models were investigated
in [15]–[17]. Using these models, flexibility of buildings
was exploited to obtain energy efficient and cost optimal
operation [18]–[21]. Furthermore, in [22]–[26], the authors
also demonstrated power system regulation/reserve services
from these building models. It was shown that the inclusion
of demand-side reserves could help to improve the operational
cost and reliability of the grid. Furthermore, the associated
monetary incentives from the reserve provision might be
instrumental to motivate aggregators/users to participate in
load management programs.

Moving towards integration of a more general flexible
demand in power systems, the authors in [27], [28], pre-
sented various formulations for integrating price-responsive
demand into the transmission grid. A similar approach, but
more inclined towards the decentralized demand dispatch, was
presented in [29]. Based on dual decomposition, the paper for-
mulated a day-ahead and real-time price-based decentralized
coordination algorithm between users/aggregators and system
operator. It was motivated that the global Lagrange multipliers
(LM) provide a direct interpretation of extra system cost as a
response to the overall energy balance constraint.

Even though [27]–[29] focused on transmission grids, but
physically, the electricity demand originates from distribution
grids. It was shown in [30] that the introduction of price-
responsive demand in distribution grids raises local congestion
issues. Due to the introduction of electric vehicles (EVs), the
authors in [30] presented a comparison of various congestion
management techniques in distribution grids. The presented
methods in [30] were not exposed to a realistic distribution
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grid setting. Hence, questions such as the cost of congestion
alleviation and grid utilization among multiple load aggrega-
tors under a realistic distribution grid were still left unsettled.

Motivated by the development of dynamic tariffs for allevi-
ating distribution grid congestion [31], in [32], the authors
presented linear programming based distribution locational
marginal prices (DLMPs). In principle, the method was based
on finding LMs of the congestion constraints instead of solving
a difficult bi-level problem of [30]. However in [33], it
was shown that due to the linear formulation the obtained
congestion alleviating solution degenerates. As a remedy, a
quadratic programming (QP) based method for calculating
DLMPs was presented in [33]. Compared to other congestion
alleviation methods [30], the advantages of the DLMP method
were: (1) it provided the lowest possible theoretical cost to
alleviate congestion and (2) it was easy to realize due to its
similarity to the existing locational marginal pricing (LMP)
concept. Apart from alleviating congestion, DLMPs were also
shown to improve the operation of distributed energy resources
in distribution grids [34], [35]. It was shown that by using
DLMPs as a price-based control signal, customers’ energy
efficiency and distribution grid’s operation capability could be
improved.

We believe that one drawback for calculating globally opti-
mal congestion alleviating DLMPs (as proposed in [33]) is the
large amount of data needed by the distribution system oper-
ator (DSO). This might raise concerns from aggregators/users
regarding their data security and privacy. Furthermore, the
presence of large number of loads with varying dynamics in
distribution grids may increase the complexity of the DSO
optimization problem. Hence, this paper provides an approach
for obtaining DLMPs in an independent and decentralized
manner. It also extends the analysis of global DLMPs [33] by
interpreting them as a tool for improving economic efficiency
of the distribution grid. Furthermore, the state-of-the-art litera-
ture [31]–[33] concerning congestion alleviation using DLMPs
is inclined towards EVs. As explained above, commercial
buildings have a huge potential for providing flexibility to
the grid. Hence, this paper also presents a building integration
aspect in a price-based control framework of distribution grids.

Similar to our concern regarding the theoretical develop-
ment of DLMPs, demand bids were used in [36]–[38] to
remove the need for the DSO to accurately predict energy re-
quirements of its underlying loads. These practical case studies
mainly focused on achieving a real-time market-based control
of distribution grids. Among many objectives, one of the key
focuses of these projects was to manage constrained feeders
in the distribution grid. Results from [36], [37] demonstrated
that a real-time pricing signal (every 5 minutes) was able to
remove congestion in the distribution grid. Authors in [38]
proposed a multi-agent system for this market-based control.
Furthermore, it was also argued that a multi-agent system
provides competence, autonomy and equilibrium to the whole
system.

This paper also recognizes the importance of a market-
based framework for integrating flexible commercial buildings
into the distribution grid. In addition, the presented distributed
variant of DLMPs of this paper connects the theoretically

optimal congestion removal [33] with practically relevant
case studies [36]–[38]. Hence, the presented methods in this
paper remain practically relevant, while providing a validation
framework for integrating congestion free flexible demand in
the distribution grid. The main contributions of this paper
are threefold. First, this paper provides a distributed vari-
ant for obtaining (globally) optimal DLMPs. As explained
above, this formulation brings the procedure for obtaining
theoretical DLMPs in alignment with the currently available
communication and infrastructure technology. Second, this
paper demonstrates the applicability of the state-of-the-art
controllable building models to be used in a combined energy
and reserves procurement while respecting distribution grid
constraints. Third, using dual decomposition, the essential
question of “who pays what”, is answered by presenting an
economically fair settlement scheme to settle the congestion
cost among interested participants of the distribution grid.
Furthermore, this settlement is shown to improve economic
efficiency of the distribution grid in the presence of price-
responsive demand.

This paper substantially extends the previous work of the
authors in [39]. The main extensions are in the form of (1)
addressing practical applicability of building models to be
used in congestion alleviating frameworks of distribution grids,
(2) developing a cooperative framework between the DSO
and building operation and (3) performing integration of the
combined reserve and energy procurement framework into the
distribution grid.

The modeling procedure for this paper is explained in
Section II. The formulation of congestion alleviation methods
and their settlement scheme are presented in Section III. In
Section IV, the simulation setup and the obtained results
are provided. Section V presents practical implications and
compatibility of both methods with the existing literature. The
conclusion and future works related to this paper are presented
in Section VI.

II. PRELIMINARIES

NOTATIONS

For aggregatori at discrete time stepk:

d̂i,k ∈ R
nd,i External and Internal Disturbances

pi,k ∈ R
np,i Input schedule ([ui,k; r i,k])

xi,k ∈ R
nx,i Thermal states

nb,i, nf , nr Number of buildings, floors and rooms

nx,i, nd,i, np,i Number of states (nb,i·nf ·nr·n), dis-
turbances (nb,i·nf ·nr·nid ) and inputs
(nb,i·nfnr·niu ·nir )

For each zone at time stept (discretek):

d̂t ∈ R
nid External and internal disturbances

n, niu , nid Number of states, HVACs and distur-
bances

pheat,t, pfan,t Heating and fan power [kW]
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pk ∈ R
nirniu Input schedule ([um,k rm,k]’) [kg/sec]

rm,k ∈ R
nir HVAC’s mass flow reserve schedule

[kg/sec]

um,t ∈ R
niu HVAC’s mass flow energy schedule

[kg/sec]

xt ∈ R
n Thermal state vector [deg C]

For modeling R-C thermal network:

ρ, ∆p, cp Density of air, pressure difference across
the fan, and specific heat capacity of air

τ iri, αwi Transmittance of windowi and absorptiv-
ity coefficient of wall, respectively

Ai
ri, Awi Total area of windowi and total area of

the wallwi, respectively

Cwi, Cri Thermal capacitance of wall and room

Nwi, Nri The set of all connected nodes to walls
and the room, respectively

q
′′

radri
, q̇intri Solar radiation and internal heat genera-

tion in the room, respectively

ri Equal to0 for internal and1 for periph-
eral walls.

Rij Thermal resistance between nodei andj

Twi, Tri, Tsi Temperature of walls, rooms and HVAC’s
supply

wi, ri number of walls and rooms

For modeling market:

β Price sensitivity coefficient [Singapore
Dollar (SGD)/(kWh)2]

c0,k Baseline price [SGD/kWh]

zk Reserve price [SGD/kWh]

A. Market Model

A liberalized market setting of the NEMS [40] is adopted
in this paper. In NEMS, the loads are allowed to bid for
reserves and energy provision through the interruptible load
(IL) [41] and the DR [42] program, respectively. For every
30-minute time interval, the NEMS publishes the energy and
reserve price through the market clearing engine (MCE) of the
Energy Market Company (EMC) [43]. General applicability of
commercial buildings, participating in IL and DR program is
also provided in [39].

1) Energy Price:In this paper, a price modeling procedure
similar to [30], [33] is adopted. It is assumed that the wholesale
energy price is coupled with the demand. In particular, it
means that the net demand (the actual system demand minus
the renewables in the grid) is directly correlated with the
energy price as:

yk = c0,k + βpk (1)

In (1), the demandpk is correlated with the spot priceyk,
through a sensitivity coefficientβ. The price corresponding
to the base demand isc0,k. The procedure for obtaining
values ofβ and c0,k is explained in [30]. The significance
of representing the energy price as in (1) is to model the
optimization problem as a QP and avoid unrealistic high peaks
in the procured demand [30].

2) Reserve Price:To represent reserve services, interrupt-
ible load (IL) from buildings is considered. Under the IL
program, if the load bid is accepted and called upon, the load
operator must curtail its load. The loads are not paid based on
the activation, rather on the availability and their presence in
the respective reserve groups. In [43], generators are placed
in reserves groups. These groups represent their member’s
response time and output quality. Due to their thermal inertia,
buildings are able to vary their power consumption rapidly.
Hence, maximum reserve priceszk at each time stepk, as
published by the EMC, are used to calculate the payment to
the aggregator/user. It means that the reserve provision from
buildings is assumed to be placed in the highest quality reserve
group of the MCE. In [40], it has also been mentioned that
loads, compared to generators, possess a natural advantage
when providing reserves.

Note that the market structure explained above allows
commercial buildings to procure flexible energy and reserves
from the spot market. As of now, there has not been any
reflection of distribution grid constraints in this spot market.
With the advent of price-responsive demand, this absorption
effect of distribution grids can jeopardize their operation [30].

B. Building Model

In the existing literature, (1) data driven models [44], [45],
(2) high fidelity physical models [14], [46], [47] and (3)
resistance-capacitance (R-C) based physical models [15], [16]
of buildings are found. Data driven models provide good
performance when operated within trained (historical) data
sets. Hence, the main drawback of these models exists in the
form of high data requirements, covering range of operating
and ambient conditions. High fidelity physical building models
represent accurate complex thermal interactions within a build-
ing. Applications of these models are mainly limited to the
estimation of annual, monthly or weekly energy consumption.
The main disadvantages of these types of models are their size
and complexity. Hence, they cannot be easily incorporated into
optimization problems, which is necessary for quantifying load
shifting potential.

For buildings, the R-C model is designed to achieve con-
trollability. These types of models attempt to mitigate issues
related to data driven and high fidelity models. Even though
R-C models represent a simplified form of high fidelity phys-
ical models, they still provide accurate enough prediction of
important thermal states of the building. Compared to their
counterparts, R-C models are computationally tractable. This
property has been specially useful in the utilization of control
theory in building operations [17], [19], [26], [48]–[50]. Hence
in this paper, an R-C based physical model is used to predict
thermal states and energy requirements of the building.
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Fig. 1. Simple R-C model representing interpretation of walls and its
surrounding environment (top right). The translation of one zone, into an R-C
thermal network (left). For simplification, zone1 is assumed to contain only
one room. The injectionsQHV AC , Qabs and Qint represent the second,
third and fourth term of (2b), respectively. Similarly,Qtrans is evaluated
using the second term of (2a).

1) Zone Model:An R-C (lumped) model of a zone consists
of thermal resistances and thermal capacitances, representing
heat transfer and heat storage, respectively. Each node in
a zone is represented by one temperature (thermal) state.
These nodes are connected with each other through thermal
resistances, and to the ground through thermal capacitances.
From Fig. 1, it can also be observed that heat flows are
represented by current injections, whereas temperatures as
voltages. The differential equations representing temperature
evolutions of walls and room are:

dTwi

dt
=

1

Cwi





∑

j∈Nwi

Tj − Twi

Rij

+ riαwiAwiq
′′

radri



 , (2a)

dTri

dt
=

1

Cri





∑

j∈Nri

Tj − Tri

Rij

+ ṁricp (Tsi − Tri)

+ wiτ
i
riA

i
riq

′′

radri
+ q̇int

]

. (2b)

The total number of state equations to represent one
zone aren = wi + ri. There are two sources of disturbances
in the model: (i) external disturbances, experienced due to
solar radiationq

′′

radri
and (ii) internal disturbances, caused

by electronic components and occupancyq̇int. More details
regarding parameters of the R-C model and their units can be
found in [15]. From (2), the temperature of the zonext can
be expressed as a nonlinear combination with the HVAC mass
flow rateum,t as:

ẋt = Axt + g(xt, um,t) + d̂t. (3)

The expression shown above is of nonlinear nature. Since the
most efficient controllers are obtained for linear systems, the
nonlinear model described above is linearized and discretized
using sequential quadratic programing and zero order hold,

respectively [51]. In [51], it is shown that linearizing around
the usual operating point does not introduce significant errors.
This is mainly because the temperature range of the building
is normally not very large. The resultant discrete time linear
system at stepk becomes:

xk+1 = Axk +Buum,k + Ed̂k +Brrm,k,

xk+1 = Axk +Baggpk + Ed̂k. (4)

In (4), pk represents the augmentation of normal (um,k) and
reserve (rm,k) consumption variables. MatricesA, Bagg and
E are of the appropriate sizes. A variable frequency drive fan
based HVAC system is considered as a source of flexibility in
the modeled zone of each building. In principle, by modulating
the fan speedṁri, the energy consumption as well as the
temperature of the room is controlled. Correspondingly, the
electrical power consumed for heatingpheat,t and fanpfan,t
as a function of control variable is given as:

pheat,t(um,t) =
um,tcp(Tsi − Tri)

η
, (5a)

pfan,t(um,t) =
um,t∆p

ρ
. (5b)
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Fig. 2. Measurements used for conducting zone model identification.

2) Identification & Validation: As an initial guess, the R-
C thermal model is first developed using typical values of
construction materials. In order to adjust the developed theo-
retical model to represent the actual thermal behavior of the
zone, parameters of the model are adjusted. This is performed
using the “fmincon” function in Matlab. In particular, optimal
parameters are found which minimizes the least square error
between the simulated and the actual temperature of the zone.
The identified parameters are then used to simulate the thermal
behavior of the zone. Figure 3 shows a comparison between
the measured temperature of an actual commercial building’s
zone [15] and the simulated temperature using the identified
parameters. The maximum absolute error of only0.46 deg C
is observed in Fig. 3, which has a negligible effect on users. To
quantify the performance of the obtained model, two metrics
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are defined: (1) the mean absolute percentage error (MAPE)
and (2) the mean absolute error (MAE).

MAPE =
1

N

N
∑

k=1

|Tri − Tmi|

Tmi

× 100 (6a)

MAE =
1

N

N
∑

k=1

|Tri − Tmi|. (6b)

In (6), Tmi andN are the measured temperature of the zone
and time duration of the experiment (24 hr), respectively.
The MAPE and MAE for the model comes out to be0.30%
and 0.21, respectively. These values show that the modeled
temperature evolution is close to the actual one.
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Fig. 3. Comparison between the simulated and actual temperature pro-
file (top), along with the absolute error (bottom).

Similar to the R-C zone network of Fig. 1, the whole
building model can also be obtained. Unfortunately, due to
the unavailability of data, the validation procedure for a
whole building cannot be provided. However, the advantage of
physically representing each parameter in R-C models can be
used for rapidly translating zone models to the whole building.
In Section VII-A, an open source toolbox is deployed to
translate an R-C based zone model to the whole building. This
translation not only preserves the computational tractability,
but it also improves the practical relevance of the adopted
modeling approach.

Note that for this paper, deterministic setting, i.e. perfect
knowledge of disturbances is assumed. To mitigate disturbance
prediction errors, authors in [15] have proposed parameter
adaption and error filtering techniques. In principle, these
techniques can be included as an additional (real-time) control
layer to the overall deterministic framework of buildings and
DLMPs. As mitigating the disturbance prediction error is not
the prime focus of the presented research, it is not discussed
in this paper.

C. Aggregator Model

The aggregator is responsible for procuring flexibility for
its contracted buildings. The interaction of the aggregator
with its underlying loads and market is shown in Fig. 4.
The aggregatori, based onnr zones innf floors of nb,i

Fig. 4. The Dark grey box represents the objective function ofthe aggregator.
All interfaces have perfect bidirectional communication with no delays and
uncertainties.

contracted buildings, augments the zone model of (4) to predict
its thermal states as:

xi,k = Axi,0 + Baggpi,k + Ed̂i,k (7)

1) Cost Optimal Energy and Reserve Provision:The cost
Jsumi,k

for procuring energy by the aggregatori is given as:

Jsumi,k
= Jumi,k

+ Jrmi,k
−Rrmi,k

(8)

whereJumi,k
and Jrmi,k

are the cost of consumption due to
variablesum,k and rm,k, respectively.Rrmi,k

represents the
revenue due to the allocation of reserves. Using (1), the cost
for a constant time interval∆t becomes:

Jumi,k
= ykp(um,k)∆t,

Jumi,k
= c0,kp(um,k)∆t+ β(p(um,k)∆t)2 (9)

wherep(um,k) = pheat,k(um,k) + pfan,k(um,k). Similarly, the
cost and revenue from the allocation of reserves are written
as:

Jrmi,k
= c0,kp(rm,k)∆t+ β(p(rm,k)∆t)2 (10)

Rrmi,k
= zkp(rm,k)∆t (11)

Substituting (9) – (11) in (8), the total cost takes the quadratic
form as:

Jsumk
= cTk pk +

1

2
pTkBpk (12)

with,

ck =

[

c0,k
c0,k − zk

]

, B =

[

β 0
0 β

]

(13)

And to allow for the ease of representing the cost function,
pk = pk∆t is assumed. For aggregatori, the total cost at time
stepk becomes:

Jsumi,k
= cT

kpi,k +
1

2
pT
i,kBpi,k (14)

Here,ck ∈ R
np,i and B ∈ R

np,i×np,i are the augmented and
block diagonal versions ofck and B, respectively. For the
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cost function defined in (13), the optimization problem for
aggregatori and time durationNt is:

min
p∗

i,k

∑

k∈Nt

Jsumi,k
(15a)

subject to

xci,k+1 = Axnc
i,k + Bc

aggpi,k + Ed̂i,k (15b)

xnci,k+1 = Axnc
i,k + Bnc

aggpi,k + Ed̂i,k (15c)

xmin
i,k ≤ xci,k ≤ xmax

i,k (15d)

xmin
i,k ≤ xnci,k ≤ xmax

i,k (15e)

umin
i,k ≤ Asumpi,k ≤ umax

i,k (15f)

pi,k,A
diffpi,k ≥ 0 ∀k ∈ Nt (15g)

From (15), the aggregator obtains the optimal inputp∗

i,k

sequence for all contracted buildings. In this context, op-
timality is in terms of minimizing the total cost of the
system. Using (15f) and (15g), the aggregator constrains the
actuator limits of all HVAC systems. MatricesAsum andAdiff

(∈ R
nb·nbr ·niu×np,i) contain entries[1 1] and [1 − 1] at

the appropriate entries to compactly represent addition and
subtraction ofum,k and rm,k variables of each zone. Due to
the consideration of reserves, two state trajectories, one for the
curtailed (15b) and the other for the non-curtailed (15c) case
are always kept feasible using (15d) and (15e), respectively.
Bnc
agg and Bc

agg are the not-curtailed and curtailed version of
Bagg, respectively.

The aggregator formulation does not consider any mini-
mum/maximum energy purchase outside the underlying loads.
This condition can be modeled by modifying bounds on the
input schedule. Other preferences such as conditional value at
risk under price uncertainties can also be formulated as linear
constraints [29], [52]. Hence, these variations of the original
formulation would still conserve the convexity of the system.
Nevertheless, the compatibility of various aggregator problems
within the congestion management framework may also form
as an interesting future work.

III. C ONGESTIONALLEVIATION METHODS FOROPTIMAL

ENERGY AND RESERVEPROVISION FROM BUILDINGS

This section presents two variations for calculating DLMPs.
Fig. 5 shows the pictorial representation of the coordination
between the DSO and aggregators for both methods.

A. Conventional DLMPs (Method A)

The modified DLMP method for the provision of unified
energy and reserve provision from buildings is described as:

1) Using (15), each aggregator submits its optimal con-
sumption and reserve schedule to the DSO.

2) The DSO collects information from the aggregators,
network and market and generates an optimal price
(DLMPs) to alleviate the congestion.

3) After obtaining DLMPs, the final energy and reserve
schedule is calculated by each aggregator and submitted
to the market/DSO.

Fig. 5. The coordination between the DSO and the aggregators for calculating
DLMPs for both methods. The DSO’s interfaces holds similar explanation to
the one explained in Fig. 4 for aggregator.

1) DSO Optimization Formulation:For total timeNt and
Ni aggregators, the DSO formulates its problem as:

min
p∗

i,k

∑

i∈Ni

∑

k∈Nt

Jsumi,k
(16a)

subject to

− fl ≤
∑

i∈Ni

∑

k∈Nt

DMipi,k ≤ fl (16b)

(15b)− (15g) ∀k ∈ Nt, ∀i ∈ Ni

In (16), the DSO optimizes the total cost of the energy
procurement (16a) and constrains each aggregator [(15b) -
(15g)] and distribution grid [(16b)] to their operating limits.
For distribution grid containingnLP load points (LPs) and
nl distribution lines, matricesD ∈ R

nl×nLP and Mi ∈
R

nLP×np,i represent the power transfer distribution factor and
the aggregatori’s demand to LPs mapping, respectively. It can
be observed that the LMsλ+,−

k (λ+
k − λ−

k , ∈ R
nl) associated

with (16b) are only non-zero for the case of line limit violation
fl ∈ R

nl . Note that line limits in the DSO formulation already
account for inflexible demand. Since these loads cannot be
procured in the market, they are not included in the objective
function of the DSO problem.

2) Modified Aggregator Optimization Formulation:Based
on the above mentiond LMs, DLMPs (λdlmpi,k

= MT
i DTλ

+,−
k

+ c) are formed by the DSO and passed to aggregators.
Aggregatori then forms the problem as:

min
p∗

i,k

∑

k∈Nt

λT
dlmpi,k

pi,k +
1

2
pT
i,kBpi,k (17)

subject to

(15b)− (15g) ∀k ∈ Nt

Due to QP formulation, the obtained DLMPs converge to the
global optimum [33]. For the case of this paper, i.e. procuring
unified energy and reserves from buildings, the proof of the
unique solution of the combined aggregator and the DSO
problem is presented in Section VII-B.

B. Iterative DLMPs (Method B)

From Fig. 5, it can be seen that in this method, data
transfer requirement is replaced by the iterative procedure for
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calculating DLMPs i.e. iDLMPs. This decomposition is made
possible because, in (16), the only coupling constraint is (16b).
To prove this, consider the Lagrange function of (16):

L(pi,k, λ
+
k , λ

−

k , ν
c
i,k, ν

nc
i,k, µ

+sum
i,k , µ−sum

i,k , µdiff
i,k , µ

pi,k

i,k ) =
∑

i∈Ni

∑

k∈Nt

Jsumi,k
+ ((λ+

k − λ−

k )
T (DMipi,k − fl))

+ νc
T

i,k(−xci,k+1 + Axnc
i,k + Bc

aggpi,k + Ed̂i,k)

+ νnc
T

i,k (xnci,k+1 − Axnc
i,k + Bnc

aggpi,k + Ed̂i,k)

+ µ+sumT

i,k (Asumpi,k − umax
i,k )− µ

pT
i,k

i,k pi,k

+ µ−sumT

i,k (−Asumpi,k + umin
i,k )− µdiffT

i,k Adiffpi,k (18)

To keep the formulation compact in (18), LMs which are
only connected to the input vector are considered. In (18),
it is evident that all aggregator’s equality(νci,k, νnci,k ∈ R

nx,i)

and inequality(µ+sum
i,k , µ−sum

i,k , µdiff
i,k , µ

pi,k

i,k ∈ R
np,i) LMs are

local, except the ones connected to constraint (16b) i.e.λ
+,−
k .

In the literature, these problems can be decomposed very
efficiently through dual decomposition [53]. In this method,
the master (DSO) problem is decomposed intoi independent
subproblems (aggregators). The global LM are then updated
using the projected subgradient/gradient algorithm.1

1) Subgradient Algorithm:Consider the partial Lagrangian
of the DSO problem with the global LMs and the objective
function:

L(pi,k, λ
+,−
k ) =

∑

k∈Nt

Jsumi,k
+ λ

+,−T

k (DMipi,k − fl). (19)

The dual of the above partial Lagrangian is given as:

g(λ+,−
k ) = inf

pi,k

L(pi,k, λ
+,−
k )

= −λ
+,−T

k fl + inf
pi,k

∑

k∈Nt

Jsumi,k
+ λ

+,−T

k (DMipi,k). (20)

The sub-gradient Sk of the negative of the dual
∂(−g)(λ+,−

k ) ∈ R
nl is then defined as:

Sk =
∑

k∈Nt

(DMip∗

i,k)− fl. (21)

With p∗

i,k is obtained after solving the following problem:

min
p∗

i,k

∑

k∈Nt

λT
idlmpi,k

pi,k +
1

2
pT
i,kBpi,k (22)

subject to

(15b)− (15g) ∀k ∈ Nt.

By observation, it can be seen thatλidlmpi,k
is similar to

λdlmpi,k
. The only difference is that in (22),λidlmp are

calculated iteratively using a dual sub-gradient method as:

1) Initialize the global LMs as:λ+,−T

k ≥ 0, and publish
λidlmpi,k

to each aggregator.
2) Repeat

a) Each aggregatori solves (22) and submits its
schedulep∗

i,k to the DSO

1The subgradient becomes a gradient when the objective function is
differentiable

b) The DSO evaluates line limit violations using (21)
c) The global LMs are updated using the subprojec-

tion asλ+,−T

k+1 = (λ+,−T

k + αkSk)+

3) The procedure is terminated based on a predefined
convergence criterion such as line loading tolerance or
improvement in the global LMs.

Since (20) is differentiable,αk ∈ R+ is chosen as a small
positive constant step size to guarantee the convergence [53].
Please note thatλidlmpi,k

is calculated based solely on global
LMs update. Since no data is shared among aggregators and
the DSO, the proposed method is completely decentralized and
can be deployed in a fully distributed manner.

C. Settlement:

For the priceλ∗+,−
k and consumptionp∗

i,k, the total cost of
congestiong(i)sum and its components can be written as:

g(i)sum = g(i)sch + g(i)con − g(i)cap (23a)

g(i)sch =
∑

k∈Nt

cT
kp∗

i,k +
1

2
p*T

i,kBp∗

i,k (23b)

g(i)con =
∑

k∈Nt

(λ∗+
k − λ∗−

k )T (DMip∗

i,k) (23c)

g(i)cap =
∑

k∈Nt

(λ∗+
k − λ∗−

k )T fl(
Ni,LP

Nt,LP

) (23d)

where g(i)sch is the cost for purchasing energy from the
wholesale market. Based on the ratio of the aggregator’s LPs
Ni,LP to the total aggregator LPs in the networkNt,LP ,
the theoretical capacity cost is distributed asg(i)cap. The
actual aggregator’s contribution to congestion is represented
by g(i)con. This settlement procedure is somewhat similar to
the one presented in [54]. The DSO merely acts as a mediator
and subsidizes/penalizes aggregators, based on the under/over
utilization of the total grid capacity, respectively.

The above presented settlement seems more intuitive from
iDLMPs’ point of view. For the generatedλ+,−

k and schedule
pi,k, the DSO evaluates the cost of congestion contribution
g(i)con and grid capacityg(i)cap for aggregatori. Using
Sk, prices are raised or lowered until they reach an equilib-
rium. The final relative congestion cost (g(i)con − g(i)cap)
decides whether the aggregator should be charged more/less
based on its over/under utilization of the allocated capacity.
Using this integrated settlement scheme, competition among
aggregators could be created to push for efficiency in their
energy consumption. Furthermore, by settling the congestion
cost locally within the distribution grid, the presented scheme
also decouples transmission grid tariffs from the distribution
grid dynamics.

Table I
SIMULATION SETUP

Case Constrained LPs αk Line limits (kW) β SGD/(kWh)2

1 6, 7 0.15 1, 200 1 · 10−4

2 6, 7, 24, 25 0.25 1, 300 1 · 10−4
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Fig. 6. The modified RBTS distribution network from [55]. Darkand light
gray buildings are contracted under the aggregator1 (LP6, 7, 16) and the
aggregator2 (LP17, 24, 25, 38), respectively.
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0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1
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(S
G

D
/k

W
h)

c0 z

Fig. 7. The energy and reserve price from the EMC Singapore [43] – reserve
prices at time step10 and12 are synthetically increased to demonstrate the
effect of reserve provision on LP’s demand. Time period24 represents exactly
the midday.

IV. SIMULATION SETUP AND RESULTS

The methods presented above are evaluated on the Bus
4 Distribution Network of Roy Billinton Test System
(RBTS) [55]. The performed modifications/assumptions for
this paper are presented in Fig. 6. The original network has7
commercial LPs, with each LP comprising10 consumers [55].
Each consumer is modeled as a building containing10 floors
and 10 zones. Using this setup, Table I shows the simulated
cases of this paper. In Table I, the imposed line limits constrain
their respective LPs. To simulate a realistic, but computation-
ally manageable problem under the lack of available data, the
measured disturbances (shown in Fig. 2) are taken as a mean
value at each stepk. The disturbances experienced by each LP
are then calculated as normally distributed around that mean
value. But no distinction is made in disturbances within one
LP. This assumption is in line with the fact that commercial
buildings and solar irradiation follow a diurnal pattern. The
energy and reserve prices used for conducting simulations are
shown in Fig. 7. The optimization problems are formulated in
YALMIP [56] and solved using CPLEX [57].

A. Scheduling

For case1, Fig. 8 represents the response of buildings
without the introduction of DLMPs. Even though constraints
for buildings are always satisfied, congestion is observed in the
distribution grid. The cause of congestion is a combination of
high space conditioning requirements, just prior to office hours
and attractive reserve provision incentives. For case1, Fig. 9
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20.02
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18

20

22
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de
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Fig. 8. The cost optimal energy and reserve scheduling for LP6 and LP7
without including DLMPs (top). Feasible temperature trajectories in spite of
the curtailing and non-curtailing of reserves (bottom).
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0
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uLP6 uLP7 rLP6 rLP7 Limit
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0
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Fig. 9. The aggregator (top) and the DSO (bottom) schedules, due to the
deployment of linear programming based DLMPs.

shows the divergence caused by linear programming based
DLMPs (β = 0). It can be observed that the aggregator
and the DSO schedule do not converge to the same value,
which could make the distribution grid operation inefficient.
To avoid issues related to congestion and divergence, QP-based

0 5 10 15 20 25 30 35 40 45 50
0
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Fig. 10. The congestion free aggregator (top) and the DSO (bottom)
schedules, due to the deployment of QP-based DLMPs.

DLMPs are deployed. For case1, Fig. 10 shows the congestion
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Table II
EFFECTIVEDLMPS (SGD/KWH) (λdlmp − Ck )

Case LPs
Time

8 9 10 11 12 13 14

1
6-7 0.023 0.029 0.046 0.081 0.132 0.203 0.3078
24-25 0 0 0 0 0 0 0

2
6-7 0 0 0 0.004 0.032 0.071 0.127
24-25 0 0 0 0 0 0.007 0.044

alleviation after introducing DLMPs. Due to the formulation
of strictly convex QPs, both the DSO’s and the aggregator’s
solution converge. This observation is in direct alignment with
the theoretical proof presented in Section VII-B. It can be
observed that after applying DLMPs, the reserves are not
scheduled anymore. This is because the incentives from the
reserve provision are outweighed by the introduced DLMPs.
Intuitively, it can be said that if reserves are now scheduled at
these time periods, they will come at the cost of distribution
grid congestion. DLMPs experienced by the constrained LPs
for both cases are presented in Table II. Due to the relaxed line
loading, in comparison to case1, DLMPs for case2 are smaller
and fewer than of case1. In general, as a response to the
congestion, the generated DLMPs reflect the load requirement,
network constraints and ex-ante market prices.
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Fig. 11. Convergence of iterative method with the optimal value. Case1 is
plotted on the left and case2 on the right side.

B. Cost Settlement and iDLMP Performance

The main results from “Method B” are presented in Fig. 11.
It can be observed that the final solution of both methods
converge to a unique value. Line tolerance of1 × 10−3 is
chosen as the stopping criteria for the subgradient algorithm.
Similar results are also obtained for the case of the dual
function as the stopping criteria. For both cases,g(2)sum
improves at the end of the algorithm. This is because, in
comparison to aggregator1, aggregator2 has a higher capacity
utilization cost (g(i)cap) and a lower congestion contribution

cost (g(i)con). The reason for the highg(i)cap is the larger
number of contracted LPs by aggregator2. g(i)con is observed
to be lower due to smaller energy consumption of buildings
connected at LP24 and LP25. Aggregator2 is also not charged
for any congestion cost for case1. This is because none of its
LPs are constrained in case1. To assess iteration requirements
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Fig. 12. Number of iterations required to reach the global optimum by the
distributed algorithm.

for iDLMPs, the simulation setup is repeated100 times for
various line loading limits. Results from case1 are presented
in Fig. 12. Due to the strictness of limits, an increase in the
iteration count is observed. The highest number of iterations
(368) is recorded for the line limit of1, 150 kW. Due to strict
energy requirements of buildings, the problem gets infeasible
for line limits lower than1, 150 kW. Hence, this study can
also help both the DSO and the aggregator to evaluate their
systems with respect to given load and network requirements.
For this paper, the iDLMPs are implemented in a sequentially
written program on a2.4 GHz processor with 64 GB RAM.
If the formulation of the aggregator problems is performed
offline (5–10s), then each iteration takes0.05–0.07s. Hence,
the worst case (368 iterations) is simulated within24s, enough
for the30-minute time interval of the NEMS. Of course these
values depend on the size and details of the aggregator model.
However, since the method is completely distributed, parallel
implementation would further decrease the execution time.

C. Economic Efficiency

This section demonstrates the superiority of DLMPs in
comparison to the common pricing structures of distribution
grids. To simplify the analysis, only energy prices are consid-
ered in this section. Furthermore, to show the effectiveness of
DLMPs in multiple aggregator settings, only case2 (see Ta-
ble I) is presented. The considered three types of prices
are: (1) time varying energy prices (λlmp), (2) flat energy
price (λflat = mean(λlmp)) and (3) the DLMP (λdlmp). It is
assumed that feeder1 (F1) supplies power to LP6 and LP7,
whereas feeder3 (F3) energizes LP24 and25).

Figure 13 shows a comparison of imposed prices and the
resultant power flow across F1 and F3. From Fig. 13, it
is obvious that with respect to adhering to the distribution
grid line limits, λdlmp outperforms all other price structures.
As explained before, this is because DLMPs reflect the true
behavior of distribution grid constraints. Forλlmp and λflat,
the power flow across feeders deviates from the optimal
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Fig. 13. Prices experienced (top) and the resultant power flowacross
F1 (middle) and F3 (bottom). Please noteλlmp is similar to c0 (see Fig. 7).

response. The imposed cost for both aggregators for various
prices is presented in Table III. It can be observed that the

Table III
COST (SGD) COMPARISON FOR DIFFERENTTARIFFS

Aggregator Cost (SGD)
Case

λflat λlmp λdlmp

1

gsch 3, 510.9 3, 561.9 3, 590.8
gcon 0 0 554.8
gcap 0 0 243.0
gsum 3, 510.9 3, 561.9 3, 902.6

2

gsch 3, 516.6 3, 581.1 3, 581.3
gcon 0 0 14.0
gcap 0 0 325.0
gsum 3, 516.6 3, 581.1 3, 207.3

usual price structuresλlmp and λflat, negatively affect the
flexibility of demand side resources. In particular, this happens
because the cost of congestion is not represented in these
prices. Hence, the comparison performed in Table III shows
that with the presence of flexible loads in the distribution grid,
usual price structures are economically inefficient. For the case
of this paper, aggregator1 is penalized by8.6% of its original
scheduling cost, as it causes more congestion than allowed
by the DSO. On the contrary, aggregator2 is subsidized by
approx.10.4%, due to its underutilization of the grid capacity.

V. I MPLEMENTATION ASPECTS

The presented methods of this paper connect thermal dy-
namics of buildings with the market-based control framework
of distribution grids. Furthermore, this paper also proposes
a new iterative-based market clearing method (iDLMPs) for
distribution grids. This section highlights the implementation
aspect of this paper, compatible with the existing literature.
In doing so, this section also gives direction for improving
practical realization of the presented methods of this paper.

A. iDLMPs

For iDLMPs, even though the solution is obtained in a com-
pletely decentralized manner, the number of exact iterations
required to converge to the optimal value are not known in
advance (see Fig. 12). Hence, the required IT infrastructure
is surely to get overburdened. As a result, some practical
consideration must be performed for deploying this method.
In [27]–[29], a functional clearing method (demand bids) with
a moving horizon (MH) implementation was proposed to solve
the iteration problem. The proposed approach used price-
based demand functions to efficiently clear the market non-
iteratively. Due to linear modeling of buildings, the functional
clearing method can also be easily adapted to this paper.
Furthermore, as a MH implementation for buildings, authors’
previous work [39] showed30 minutes time step and a MH of
1 day is sufficient for the optimal energy and reserve provision
from buildings. In [58], various methods are given to improve
the speed of convergence for distributed methods. As convexity
of the original formulation is preserved in these methods,
iDLMPs can also be efficiently adapted for them.

B. Buildings

The aggregator’s prediction of available flexibility in the
building is most likely to be communicated through the build-
ing management system (BMS), installed in most commercial
buildings. Hence, it is imperative that the theoretical building
model is compatible to be handled with the current BMS.
The authors in [59] discussed a virtual environment in which
interaction of buildings, communication networks and power
systems was discussed. Similar to Section VII-A, the authors
in [59] also used the BRCM toolbox to obtain the reduced
order model of the actual building. Furthermore, the authors
also presented the necessary communication infrastructure
required for operating the DSO and users. For standardizing
communication between active participants of DR, opendADR
was used [60]. As identified in [59], the work presented in this
paper also respects the practical and theoretical constraints.
This is because the adopted building model is shown to
be easily translatable to BRCM (see Section VII-A), while
the presented distributed calculation method requires no data
sharing between different entities of the grid.

VI. CONCLUSION & FUTURE WORK

This paper presents two methods for removing congestion
in the presence of energy and reserve provision from build-
ings. By incorporating grid line limits and building energy
requirements, an integrated optimal solution is obtained, which
respects both network and load constraints, while maximizing
the utility of the overall system. Furthermore, using dual
decomposition of the original problem, an economically fair
settlement scheme for the congestion cost is also presented.
The presented methods show high compatibility with the
already proposed cost-optimal congestion alleviation strate-
gies in the existing literature. Furthermore, this paper shows
the improvement in distribution grid economics, due to the
deployment of DLMPs. However, it must be noted that in
order to acquire optimal congestion-free energy and reserves
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from buildings, availability of high data sharing (DLMPs)
or communication infrastructure (iDLMPs) must exist. The
future work regarding this paper includes: (1) the computation
requirements of DLMPs, and its deviation from the global
optimality for the case of uncertainties in prices and energy
requirement and losses in the distribution grid, (2) the com-
parison of demand-bid and iDLMPs and (3) various types of
distributed optimization problems to calculate iDLMPs.

VII. A PPENDIX

A. Adapting the R-C Zone Model to BRCM

The main advantages of adopting the BRCM toolbox [61] to
generate building models are: (1) it automates the connection
of zone differential equation, and (2) it allows for bench-
marking and comparing of control/optimization techniques for
building simulation [18], [48], [49], [59]. Hence, the zone
model described in Section II-B1, is shown to be translatable
to BRCM using the description provided below.

The advantage of the BRCM toolbox comes from its ability
to separate the dynamic thermal model (heat transfer between
rooms, walls etc.) and the static external heat flux (EHF)
model (solar and internal gains etc.) of the building. Keeping
the similar notation of Section II-B1, the BRCM represents
the interaction of thermal states (temperatures),xt with the
aggregated EHF inputs,qt as:

ẋt = Axt + Bqt(xt, um,t, d̂t). (24)

In principle, qt can be considered as a response in the
form of heat due to the influence of control inputs (um,t) and
disturbances (̂dt) on the system. Fornu number of inputs, the
thermal model in (24) is discretized in order to obtain a bilinear
model of the system (the time varying product of states and
disturbances with control inputs)2

xk+1 = Axk +Buuk + E
d̂
d̂k

+

nu
∑

i=1

(E
d̂u,i

d̂k +Bxu,ixk)uk,i, (25)

In order to bring the model of (25) into the presented zone
model in Section II-B1, two simplifications can be performed:
(1) it is assumed that the temperature experienced by the
outside of the walls, solar irradiation and heat gains are known
in advance (from historical data), and (2) only the HVAC’s
mass flow is taken as a control input. Under these assumptions,
the input dependent stateBxu and disturbanceE

d̂u,i
matrices

are concatenated intoA and E, respectively. Similarly, the
model is also extended to provide IL by introducing a reserve
vectorrk. The resultant discrete time linear state space model
then becomes:

xk+1 = Axk +Bu(uk + rk) + Ed̂k (26)

As a validation, Fig. 14 shows the comparison between the
simulated zone models and the measured temperature. It can
be observed that the BRCM toolbox represents a close similar-
ity to the actual temperature evolution. This validation enforces

2Refer to [61] for the more information regarding the thermal model and
its corresponding matrices of BRCM.

that the BRCM provides an extensible, yet comprehensive tool
for modeling the thermal dynamics of a building.
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Fig. 14. Temperature profiles of simulated zone models, usingBRCM and R-
C model( Section II), and their comparison with the actual measurements [15].

B. Proof of Convergence of the DSO and the Aggregator
Optimization Problem

The Karush Kuhn Tucker (KKT) conditions for the DSO
problem are:

cT
k + Bpi,k +MT

i DT (λ+
k − λ−

k ) + BcT

aggν
c
i,k + BncT

agg ν
nc
i,k

+ AsumT

(µ+sum
i,k − µ−sum

i,k )− AdiffT

µdiff
i,k − µ

pi,k

i,k = 0 (27)

λ+
k · (

∑

i∈Ni

∑

k∈Nt

DMipi,k − fl) = 0 (28)

λ−

k · (−
∑

i∈Ni

∑

k∈Nt

DMipi,k − fl) = 0 (29)

µ+sum
i,k · (Asumpi,k − umax

i,k ) = 0 (30)

µ−sum
i,k .(−Asumpi,k + umin

i,k ) = 0 (31)

µdiff
i,k · (−Adiffpi,k) = 0 (32)

µ
pi,k

i,k · (−pi,k) = 0 (33)

λ+
k , λ

−

k ≥ 0 (34)

µ−sum
i,k , µ+sum

i,k , µdiff
i,k , µ

pi,k

i,k ≥ 0 ∀i ∈ Ni, ∀k ∈ Nt (35)

and [(15b) - (15g)]. Similarly, for the aggregatori problem,
the KKT conditions are:

cT
k + Bpi,k +MT

i DT (λ+
k − λ−

k ) + BcT

aggν
c
i,k + BncT

agg ν
nc
i,k

+ AsumT

(µ+sum
i,k − µ−sum

i,k )− AdiffT

µdiff
i,k − µ

pi,k

i,k = 0 (36)

µ−sum
i,k · (Asumpi,k − umax

i,k ) = 0 (37)

µ−sum
i,k · (−Asumpi,k + umin

i,k ) = 0 (38)

µdiff
i,k · (−Adiffpi,k) = 0 (39)

µ
pi,k

i,k · (−pi,k) = 0 ∀k ∈ Nt (40)

along with [(35), (15b) - (15g)].
By observing the DSO QP, one can see that the Hessian

matrix of the quadratic term in the objective function (16a) is
a positive definite matrix. Hence, the QP in (16), containing
the positive definite matrix in the objective function and affine
constraints, is strictly convex. This problem yields a unique
minimizer and its KKT conditions are necessary and sufficient
[62]. Similar arguments apply to the aggregator’s QP.

Since a solution of the KKT condition of the DSO problem,
(p∗

i,k, µ
−sum∗

i,k , µ+sum∗

i,k , µdiff∗
i,k , µ

pi,k∗

i,k , νc∗i,k, ν
nc∗
i,k , λ+∗

k , λ−∗

k ),
respects DSO problem constraints [(15b) – (15g), (16b)]

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPWRS.2016.2605921

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



12

and its KKT conditions [(27) – (35)]. This implies that a
solution (p∗

i,k) is a solution of the DSO optimization problem.
Similarly, the solution of the aggregatori’s QP,
(p∗∗

i,k, µ−sum∗∗

i,k , µ+sum∗∗

i,k , µdiff∗∗
i,k , µ

pi,k∗∗

i,k , νc∗i,k, νnc∗∗i,k )
also satisfies its individual constraints [(15b) – (15g)] and
KKT conditions [(36) – (40), (35)]. By observation, the
DSO problem has all aggregator constraints embeded in it.
Hence,p∗

i,k is also a valid solution of the aggregator problem.
But the solution of the aggregator problem may not be the
solution of the DSO’s problem, because each aggregator is
not responsible for line limits [(28) and (29)]. However, due
to the solution of the DSO and aggregator problem being
unique, the solution of the aggregator problem must also be
a valid solution to the DSO problem(p∗

i,k = p∗∗

i,k).
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