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Abstract—Buildings are candidates for providing flexible de- allowed to change slowly even when the power consumption
mand due to their high consumption and inherent thermal s changed rapidly [10].
inertia. In the future, flexible demand side reserves may also However, as pointed out in [11]-[13], there are many chal-

help to relax the expected higher reserve requirements of the | hich exist for int ting flexibility f ial
grid due to the presence of renewables. However, this flexible enges which exist tor integrating Tiexibility from commercia

demand might be vulnerable to price signals, as simultaneous buildings into the power system. Among many, the two most
increase in consumption by multiple buildings due to low (high) important challenges exist in the form of (1) obtaining reliable
energy (reserves) price periods might cause congestion in dis-and controllable building models and (2) providing a smooth
tribution grids. In order to integrate congestion free energy framework to achieve a high consensus between the power
and reserve provision from buildings, this paper presents two . . L .
benchmark pricing methodologies: (1) distribution locational system and the building OD?rat!On' More.over, this mFegraﬂon
marginal prices (DLMP) and (2) iterative DLMP (iDLMP).  should be performed considering practical constraints such
Both methods deploy convex optimization to obtain an optimal as the requirement of additional communication technology
solution of the original problem. Using dual decomposition, a infrastructure.

settlement scheme, which efficiently distributes the congestion 5 great deal of work had been dedicated for develop-
cost among involved participants is also presented. Case studies.

are performed on a benchmark distribution system along with the Ing P””ding Simulat.ion tools .[1‘."]' These puilding models
National Energy Market Singapore’s (NEMS) price framework. ~ Provide understanding of building operations as well as
The results prove that both methods optimally remove congestion annual/monthly/weekly energy consumption. For obtaining

from distribution grids and have potential to be integrated into quantifiable demand response (DR) potential of commercial

the theoretical framework of liberalized markets. Furthermore buildi ; A ; :
3 e ; ' uildings, control-oriented building models were investigated
as a comparison, it is shown that the DLMP based prices out . 9 9 9

performs existing pricing structures of the distribution grid. In [15]_[17.]' Using thfese models, .fl.exibility of buildings
Hence, using this scheme, the DSO can evaluate existing tariffswas exploited to obtain energy efficient and cost optimal
and introduce incentives for price responsive demands. However, operation [18]-[21]. Furthermore, in [22]-[26], the authors

to support these methods, the high requirement for information  also demonstrated power system regulation/reserve services
sharing in the DLMP method and/or communication technology  from these building models. It was shown that the inclusion
infrastructure for calculating iDLMPs must exist in the future . . .
grid. of demand-s_lde. reserves cou!d help to improve the opera_tlonal
cost and reliability of the grid. Furthermore, the associated
monetary incentives from the reserve provision might be
instrumental to motivate aggregators/users to participate in
load management programs.
l. INTRODUCTION Moving towards integration of a more general flexible
Demand flexibility aims to help power systems becomgemand in power systems, the authors in [27], [28], pre-
more competitive, economical and reliable [1], [2]. Furthesented various formulations for integrating price-responsive
more, flexible demand has also shown the potential to mitigatemand into the transmission grid. A similar approach, but
the variability of renewable energies [3], [4]. Hence, it isnore inclined towards the decentralized demand dispatch, was
expected in the near future that flexible demand can play presented in [29]. Based on dual decomposition, the paper for-
integral role in efficiently decarbonizing the power system. mulated a day-ahead and real-time price-based decentralized
Buildings’ share of the worldwide energy usage is akoordination algorithm between users/aggregators and system
most40% [5], with approximately half of it being used in theiroperator. It was motivated that the global Lagrange multipliers
heating, ventilation and air conditioning (HVAC) systems [6](LM) provide a direct interpretation of extra system cost as a
An energy intensive nation, such as Singapore, observesponse to the overall energy balance constraint.
electricity consumption shares d£%, 37% and 15% in its Even though [27]-[29] focused on transmission grids, but
industrial, commercial and residential sector, respectively [flhysically, the electricity demand originates from distribution
Notably in Singapore, due to its hot and humid climatgrids. It was shown in [30] that the introduction of price-
annual energy consumption from space conditioning of tmesponsive demand in distribution grids raises local congestion
commercial sector almost amounts ToTWh (52% of the issues. Due to the introduction of electric vehicles (EVs), the
total) [8]. Hence in principle, commercial buildings have thauthors in [30] presented a comparison of various congestion
potential to become a huge source of flexibility [9]. Especiallynanagement techniques in distribution grids. The presented
with the support of their thermal inertia, the temperature imethods in [30] were not exposed to a realistic distribution

Index Terms—Flexible Demand, Buildings, Congestion Man-
agement, Convex Optimization, Distribution Grid.

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPWRS.2016.2605921

grid setting. Hence, questions such as the cost of congestiopiimal congestion removal [33] with practically relevant
aleviation and grid utilization among multiple load aggregacase studies [36]-[38]. Hence, the presented methods in this
tors under a realistic distribution grid were still left unsettlechaper remain practically relevant, while providing a validation
Motivated by the development of dynamic tariffs for alleviframework for integrating congestion free flexible demand in
ating distribution grid congestion [31], in [32], the authorshe distribution grid. The main contributions of this paper
presented linear programming based distribution locatiorele threefold. First, this paper provides a distributed vari-
marginal prices (DLMPSs). In principle, the method was basedht for obtaining (globally) optimal DLMPs. As explained
on finding LMs of the congestion constraints instead of solvirgpove, this formulation brings the procedure for obtaining
a difficult bi-level problem of [30]. However in [33], it theoretical DLMPs in alignment with the currently available
was shown that due to the linear formulation the obtainetmmunication and infrastructure technology. Second, this
congestion alleviating solution degenerates. As a remedypaper demonstrates the applicability of the state-of-the-art
guadratic programming (QP) based method for calculatimgntrollable building models to be used in a combined energy
DLMPs was presented in [33]. Compared to other congestiand reserves procurement while respecting distribution grid
alleviation methods [30], the advantages of the DLMP methadnstraints. Third, using dual decomposition, the essential
were: (1) it provided the lowest possible theoretical cost tuestion of “who pays what”, is answered by presenting an
alleviate congestion and (2) it was easy to realize due to @sonomically fair settlement scheme to settle the congestion
similarity to the existing locational marginal pricing (LMP)cost among interested participants of the distribution grid.
concept. Apart from alleviating congestion, DLMPs were aldéurthermore, this settlement is shown to improve economic
shown to improve the operation of distributed energy resouraefficiency of the distribution grid in the presence of price-
in distribution grids [34], [35]. It was shown that by usingesponsive demand.
DLMPs as a price-based control signal, customers’ energyThis paper substantially extends the previous work of the
efficiency and distribution grid’s operation capability could bauthors in [39]. The main extensions are in the form of (1)
improved. addressing practical applicability of building models to be
We believe that one drawback for calculating globally optiised in congestion alleviating frameworks of distribution grids,
mal congestion alleviating DLMPs (as proposed in [33]) is th@) developing a cooperative framework between the DSO
large amount of data needed by the distribution system opand building operation and (3) performing integration of the
ator (DSO). This might raise concerns from aggregators/usetsmbined reserve and energy procurement framework into the
regarding their data security and privacy. Furthermore, tléstribution grid.
presence of large number of loads with varying dynamics in The modeling procedure for this paper is explained in
distribution grids may increase the complexity of the DSGection Il. The formulation of congestion alleviation methods
optimization problem. Hence, this paper provides an approaahd their settlement scheme are presented in Section Ill. In
for obtaining DLMPs in an independent and decentralizeskction IV, the simulation setup and the obtained results
manner. It also extends the analysis of global DLMPs [33] kyre provided. Section V presents practical implications and
interpreting them as a tool for improving economic efficiencgompatibility of both methods with the existing literature. The
of the distribution grid. Furthermore, the state-of-the-art liter@onclusion and future works related to this paper are presented
ture [31]-[33] concerning congestion alleviation using DLMP# Section VI.
is inclined towards EVs. As explained above, commercial
buildings have a huge potential for providing flexibility to I
the grid. Hence, this paper also presents a building integration
aspect in a price-based control framework of distribution grids. NOTATIONS
Similar to our concern regarding the theoretical develogpr aggregatot at discrete time step:
ment of DLMPs, demand bids were used in [36]-[38] tq
remove the need for the DSO to accurately predict energy b« € R"?*  External and Internal Disturbances
uirements of its underlying loads. These practical case studjes Tp.s -
g‘nainly focused on achieving a real-time rgarket-based contfdl® R Input schedule [ i s«
of distribution grids. Among many objectives, one of the key; , € R"=*  Thermal states
focuses of these projects was to manage constrained feeders
in the distribution grid. Results from [36], [37] demonstratef:¢* "/ "'
that a real-time pricing signal (every 5 minutes) was able 19,4, nai, np: Number of statesrg, ;-n-n,-n), dis-
remove congestion in the distribution grid. Authors in [38] turbancesy, ;-n ;-n,-n;,) and inputs
proposed a multi-agent system for this market-based control. (npin iy, ni)
Furthermore, it was also argued that a multi-agent system
provides competence, autonomy and equilibrium to the Wh(ﬁé’
system. dy € R External and internal disturbances
This paper also recognizes the importance of a market-
based framework for integrating flexible commercial building®: 7., ni, ~ Number of states, HVACs and distur-
into the distribution grid. In addition, the presented distributed bances
variant of DLMPs of this paper connects the theoreticallyheas t, prans Heating and fan power [kW]

. PRELIMINARIES

Number of buildings, floors and rooms

r each zone at time step(discretek):
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Input schedule [« ™m,x]") [Kg/sec]

HVAC'’s mass flow reserve schedule
[kg/sec]

HVAC'’s mass flow energy schedule
[kg/sec]

Thermal state vector [deg C]

For modeling R-C thermal network:

P Ap, ¢,
T;ia Qi
Al Awi
Cwia Cri
Nwir Nri

" .
qradri' Gint,;
T
Rij
Twin TM’: Tsi
wi, 11

Density of air, pressure difference across
the fan, and specific heat capacity of air

Transmittance of window and absorptiv-
ity coefficient of wall, respectively

Total area of window and total area of
the wall wi, respectively
Thermal capacitance of wall and room

The set of all connected nodes to walls
and the room, respectively

Solar radiation and internal heat genera-
tion in the room, respectively

Equal to0 for internal andl for periph-
eral walls.

Thermal resistance between nadand j

Temperature of walls, rooms and HVAC’s
supply
number of walls and rooms

For modeling market:

B

Co,k

2k

Price sensitivity coefficient [Singapore
Dollar (SGD)/(kWh¥]

Baseline price [SGD/kWh]
Reserve price [SGD/kWh]

A. Market Model

http://dx.doi.org/10.1109/TPWRS.2016.2605921

In (1), the demang, is correlated with the spot pricg,
through a sensitivity coefficien. The price corresponding
to the base demand ig ;. The procedure for obtaining
values of 8 and ¢g , is explained in [30]. The significance
of representing the energy price as in (1) is to model the
optimization problem as a QP and avoid unrealistic high peaks
in the procured demand [30].

2) Reserve PriceTo represent reserve services, interrupt-
ible load (IL) from buildings is considered. Under the IL
program, if the load bid is accepted and called upon, the load
operator must curtail its load. The loads are not paid based on
the activation, rather on the availability and their presence in
the respective reserve groups. In [43], generators are placed
in reserves groups. These groups represent their member’s
response time and output quality. Due to their thermal inertia,
buildings are able to vary their power consumption rapidly.
Hence, maximum reserve prices at each time steg, as
published by the EMC, are used to calculate the payment to
the aggregator/user. It means that the reserve provision from
buildings is assumed to be placed in the highest quality reserve
group of the MCE. In [40], it has also been mentioned that
loads, compared to generators, possess a natural advantage
when providing reserves.

Note that the market structure explained above allows
commercial buildings to procure flexible energy and reserves
from the spot market. As of now, there has not been any
reflection of distribution grid constraints in this spot market.
With the advent of price-responsive demand, this absorption
effect of distribution grids can jeopardize their operation [30].

B. Building Model

In the existing literature, (1) data driven models [44], [45],
(2) high fidelity physical models [14], [46], [47] and (3)
resistance-capacitance (R-C) based physical models [15], [16]
of buildings are found. Data driven models provide good
performance when operated within trained (historical) data
sets. Hence, the main drawback of these models exists in the
form of high data requirements, covering range of operating
and ambient conditions. High fidelity physical building models
represent accurate complex thermal interactions within a build-

A liberalized market setting of the NEMS [40] is adopteghg. Applications of these models are mainly limited to the
in this paper. In NEMS, the loads are allowed to bid fogstimation of annual, monthly or weekly energy consumption.
reserves and energy provision through the interruptible log#e main disadvantages of these types of models are their size
(IL) [41] and the DR [42] program, respectively. For everand complexity. Hence, they cannot be easily incorporated into
30-minute time interval, the NEMS publishes the energy anshtimization problems, which is necessary for quantifying load
reserve price through the market clearing engine (MCE) of tRgifting potential.

Energy Market Company (EMC) [43]. General applicability of For buildings, the R-C model is designed to achieve con-
commercial buildings, participating in IL and DR program igrollability. These types of models attempt to mitigate issues
also provided in [39].

1) Energy Price:In this paper, a price modeling procedur@R-C models represent a simplified form of high fidelity phys-
similar to [30], [33] is adopted. It is assumed that the wholesaileal models, they still provide accurate enough prediction of
energy price is coupled with the demand. In particular, jinportant thermal states of the building. Compared to their
means that the net demand (the actual system demand migeisnterparts, R-C models are computationally tractable. This
the renewables in the grid) is directly correlated with thgroperty has been specially useful in the utilization of control
energy price as:

Yk = co,k + BPk

related to data driven and high fidelity models. Even though

theory in building operations [17], [19], [26], [48]-[50]. Hence
in this paper, an R-C based physical model is used to predict
thermal states and energy requirements of the building.

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TPWRS.2016.2605921
4
7one Model R-C Model respectively [51]_. In [5_1], it is shOV\_/n that Iinegriz_ir)g around
T the usual operating point does not introduce significant errors.
T This is mainly because the temperature range of the building
T is normally not very large. The resultant discrete time linear
T Tes T, Tee T system at stefg becomes:
l Ry Rw R R, l 7
Tout T3 2 2 Th41 = Al‘k + Buum,k + Edy, + Brrm,ka
A~ L 3 1'51 '|—'cw CZI R
A A Th4+1 = Axy + Baggpk + Edy,. (4)
R Ry
, k4, h1\2A1\2
o In (4), pi, represents the augmentation of normal, (;) and
\ s " reserve £, ;) consumption variables. Matrice$, B4, and
Window E are of the appropriate sizes. A variable frequency drive fan
rone T based HVAC system is considered as a source of flexibility in
HvaC - oned fr1 oy .. !
ks Conductive eataster Zone 3 the modeled zone of each building. In prmqple, by modulating
h: Convective heat transfer Ts the fan speedn,;, the energy consumption as well as the
m,: Mass of the element x H ;
L-Length of the wall Ty Zone2 temperature of the room is controlled. Correspondingly, the

electrical power consumed for heatipgeas: and fanpean ¢

Fig. 1. Simple R-C model representing interpretation of svadind its as a function of control variable is given as.

surrounding environment (top right). The translation of one zone, into an R-C
um,tcp (Tsz - TTZ)

thermal network (left). For simplification, zonkeis assumed to contain only (u ) _ (5a)
one room. The injection) v ac, Qavs and Qin: represent the second, Dheat,t\Um,t) = n )
third and fourth term of (2b), respectively. Similarl:,q»s is evaluated A
using the second term of (2a). Prant (tm,) = Ym,t8P (5b)
; ; P
1) Zone Model:An R-C (lumped) model of a zone consists
of thermal resistances and thermal capacitances, representing, 5 ‘ 60
heat transfer and heat storage, respectively. Each node in — Tout 50 — T
a zone is represented by one temperature (thermal) state. lo i )
These nodes are connected with each other through therngl 13 - 18 40} -
. . =) ©
resistances, and to the ground through thermal capacitances. {9 17 30l i
From Fig. 1, it can also be observed that heat flows are ] - | N

| |
represented by current injections, whereas temperatures asno 10 20 30 40 50 ~ 0 10 20 30 40 5C

voltages. The differential equations representing temperature 10-2
evolutions of walls and room are: ! 0 [T "
0.8 abs 1 40 77
dT. 1 T T 06l L" Qt'rans 8 ~
wi 23T e A 2 = R @
dt C’wi § ) RZ] + T'i Qs wqu(Ld” ’ ( a) = 0.4 - ] ..-." o 7 g’ 2 -
J wi 0.2} 5 |
. L . 0 Oad | | | 0 | I I
T _ 1 Z LT + 1picy (Toi — Ti) 0 10 20 30 40 50 O 10 20 30 40 5C
dt Cn | o= Ry Time Period Time Period
+ wiTﬁiAiiq:adﬂ + Gint| - (2b)  Fig. 2. Measurements used for conducting zone model ideattifiz.

The tftal_ rlumb_?[] of state equations tof r(;a_pres;znt onez) Identification & Validation: As an initial guess, the R-
zone aren = wi + ri. There are two sources of dISIUrbanceg o s model is first developed using typical values of

in the mgdgl: (9 external fjls_turbances_, experienced due 8nstruction materials. In order to adjust the developed theo-
solar radiationg,,, , and (i) internal disturbances, causegy,

by el : q ) M Yetail tical model to represent the actual thermal behavior of the

y e Zt_:tronlc compone?tsh ar;z gccugalra}@yg ho_re gtal S f?one, parameters of the model are adjusted. This is performed
regarding parameters of the R-C model and their units can ng the “fmincon” function in Matlab. In particular, optimal
found in [15]. From (2), the temperature of the zanecan

b d i binati ith the HVAC arameters are found which minimizes the least square error
€ expressed as a noniinear comoination wi € M35&tween the simulated and the actual temperature of the zone.

flow rate um ¢ as: The identified parameters are then used to simulate the thermal
iy = Azy + g(ze, um.e) + dy. ©) behavior of the zone. Figure 3 shows a comparis_on b(_etv_veen
the measured temperature of an actual commercial building’s
The expression shown above is of nonlinear nature. Since #ane [15] and the simulated temperature using the identified
most efficient controllers are obtained for linear systems, tiparameters. The maximum absolute error of dnif6 deg C
nonlinear model described above is linearized and discretizedbserved in Fig. 3, which has a negligible effect on users. To
using sequential quadratic programing and zero order hotgyantify the performance of the obtained model, two metrics
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are defined: (1) the mean absolute percentage error (MAPE) (ool e ‘.
and (2) the mean absolute error (MAE). ! Disty bance?:x’i
: 1111 :
N P . Energy and State : T I { T :
MAPE = i Z M x 100 (6a) Z:zeerve Aggregator Eistdu.rb.:-mcesi i
N k=1 Tmz :> Market  Building ediction | Building N |
N Market <: Interface; nterface ! i
Co-optimized :‘|> : H
MAE - i |T i — 1, | (6b) Reserve & Rese‘:v: a;dlé:e'gv Reserve & }E))'(tterb i
- N i mi|- Energy Schedule Energy | Disiaipances '
k=1 Allocation Schedule E T H i
In (6), T;,; and N are the measured temperature of the zone = inputs | ;
and time duration of the experiment (24 hr), respectively. ) outputs A, _Buldnet

The MAPE and MAE for the model comes out to 680%
and 0.21, respectively. These values show that the model€d. 4. The Dark grey box represents the objective functiothefaggregator.

temperature evolution is close to the actual one. All inter'fa_ces have perfect bidirectional communication with no delays and
uncertainties.
22 T
ool Sl ) | contracted buildings, augments the zone model of (4) to predict
> . its thermal states as:
3] .
T 20 — Simulated i
19 \ | i Mgasur‘ed | | | Xik = Azio + Baggpi,k +Edi ()
0 5 10 15 20 25 30 35 40 45
041 Absolute Errorﬁ 1) Cost Optimal Energy and Reserve Provisiofhe cost
o 02p ) Jwum, ., fOr procuring energy by the aggregatois given as:
(o] 0 .| o
(3]
© —02f . _ _
ol N ] s = i, + Ty~ R ®)
0 5 10 15 20 25 30 35 40 45 where J,,, andJ,,  are the cost of consumption due to

Time Period variablesuy,,  and ry, x, respectively.R,. . represents the

Fig. 3. Comparison between the simulated and actual tempergiro- '€VENUE due to the allocation of reserves. Using (1), the cost

file (top), along with the absolute error (bottom). for a constant time intervah¢ becomes:
Similar to the R-C zone network of Fig. 1, the whole S, , = YeP(Um k)AL,
building model can also be obtained. Unfortunately, due to o = copp(um x) At + B(p(tm 1) At)? (9)
mi g ) ) )

the unavailability of data, the validation procedure for a

whole building cannot be provided. However, the advantage\wherep(um i) = Pheat,k (Um,k) + Dran,k(Um k). Similarly, the
physically representing each parameter in R-C models candwst and revenue from the allocation of reserves are written
used for rapidly translating zone models to the whole buildings:

In Section VII-A, an open source toolbox is deployed to

translate an R-C based zone model to the whole building. This T = CopD(Tm ) A + B(p(rm 1) At)? (10)
translation not only preserves the computational tractability, R, . = 2kp(rm k) At (11)

but it also improves the practical relevance of the adopted )

modeling approach. Substituting (9) — (11) in (8), the total cost takes the quadratic

Note that for this paper, deterministic setting, i.e. perfeé@rm as:
knowledge of disturbances is assumed. To mitigate disturbance T 1 5
prediction errors, authors in [15] have proposed parameter Jsumy, = i Pr + 9Pk Bpy,
adaption and error filtering techniques. In principle, these
techniques can be included as an additional (real-time) contW”h'
layer to the overall deterministic framework of buildings and Cok B0
DLMPs. As mitigating the disturbance prediction error is not Ck = { ’ } » 2= {0 5] (13)

the prime focus of the presented research, it is not discussed
in this paper. And to allow for the ease of representing the cost function,

pr = prAt is assumed. For aggregatorthe total cost at time
stepk becomes:

(12)

Cok — Rk

C. Aggregator Model

The aggregator is responsible for procuring flexibility for Joums , = chiyk + lplkBpi’k (14)
its contracted buildings. The interaction of the aggregator ' 2
with its underlying loads and market is shown in Fig. 4Here,c, € R"»i andB € R"»i*"».i gre the augmented and
The aggregatot, based omn, zones inns floors of n,; block diagonal versions of;, and B, respectively. For the
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cost function defined in (13), the optimization problem for

. . . . 5
aggregatotr and time durationV; is: V[ segegsor v
1 1 Market i Building i
. z : Reserve & Energy and 1| Interface § Interface
min Jsumi k (153) Energy Rre‘s;i‘r{e :ri:e : Co-optimized Reserve : State, Disturbanc
P} ’ Sthterle ! | and Energy Schedule | | pregiction from
“F keN, 0s0 ! ! toads
Su bjeCt to Market i Network Aggregator |:
N Interfacé  Data | Interface !
c _ ne c ) :
Xi7k+1 - AXivk + BaggpiJg + EdZVk (15b) Congestion 4 Aggregator - 1 ﬁz .
e & Energy
nc _ nc nc o Management § e T i | chedule
Xigr1 = AXJy + BagePik + Edik (15¢) 3 | itetoce | meraes | | toLoses
i DLMPs 1 ['Co- optimized Reserve | |
min c max ' I
Xik Xig <Xk (15d) E s £ g LS |
X:Z’:Lkln S X;L?; § X,Zbkax (159) |::>0ucpucs <::>MethodB
min sum max
Uit < AT, S U (15f)

diff Fig. 5. The coordination between the DSO and the aggregaiocafculating
Pik> A Pi.k >0 Vk € Ny (159)  DLMPs for both methods. The DSO's interfaces holds similar explanation to
the one explained in Fig. 4 for aggregator.
From (15), the aggregator obtains the optimal inggt,
sequence for all contracted buildings. In this context, op- o _ _
timality is in terms of minimizing the total cost of the 1) DSO Optimization FormulationFor total timeN; and

system. Using (15f) and (15g), the aggregator constrains the aggregators, the DSO formulates its problem as:

actuator limits of all HVAC systems. Matricés™™™ and A%t .

(€ RmmormiuXnpi) contain entries[1 1] and [I — 1] at LmAn ZEZ; k; Jsums x (162)

the appropriate entries to compactly represent addition and subject :to ‘

subtraction ofu,, , andry, ; variables of each zone. Due to

the consideration of reserves, two state trajectories, one for the - i< Z Z DM;p; . < fu (16b)
curtailed (15b) and the other for the non-curtailed (15c) case iEN; KEN;

are always kept feasible using (15d) and (15€), respectively. (15b)— (159) VEk € Ni, Vi € N;

B,ge and B;gg_ are the not-curtailed and curtailed version of, (16), the DSO optimizes the total cost of the energy
Bagg, respectively. _procurement (16a) and constrains each aggregator [(15b) -

The aggregator formulation does not consider any mini15q)] and distribution grid [(16b)] to their operating limits.
mum/maximum energy purchase outside the underlying loagsy distribution grid containing.zp load points (LPs) and
This condition can be modeled by modifying bounds on the gistribution lines, matricesD € R™*"r and M; €

input schedule. Other preferences such as conditional valuggat. » xn., ; represent the power transfer distribution factor and
risk under price uncertainties can also be formulated as linggg aggregator's demand to LPs mapping, respectively. It can
constraints [29], [52]. Hence, these variations of the origingk gpserved that the LM5~(\{ — A, € R™) associated
formulation would still conserve the convexity of the systemyith (16b) are only non-zero for the case of line limit violation
Nevertheless, the compatibility of various aggregator problemsc rn:Note that line limits in the DSO formulation already
within the congestion management framework may also forfgcount for inflexible demand. Since these loads cannot be

as an interesting future work. procured in the market, they are not included in the objective
function of the DSO problem.
I1l. CONGESTIONALLEVIATION METHODS FOROPTIMAL 2) Modified Aggregator Optimization FormulatiorBased
ENERGY AND RESERVEPROVISION FROMBUILDINGS on the above mentiond LMs, DLMP8 {innp, , = M D"\~

+ c) are formed by the DSO and passed to aggregators.
This section presents two variations for CalCUlating DLMP&ggrega’[om then forms the prob|em as:
Fig. 5 shows the pictorial representation of the coordination 1
between the DSO and aggregators for both methods. min Z )\({Impv Pkt ~p!,.Bp; 17)
Pik o, pRUDE 20RO
subject to

A. Conventional DLMPs (Method A) (15b)— (15g) vk e N
- t

The modified DLMP method for the provision of unified ) .
energy and reserve provision from buildings is described aBu€ to QP formulation, the obtained DLMPs converge to the

. o . lobal optimum [33]. For the case of this paper, i.e. procuring
1) Usmg_(15), each aggregator submits its optimal COﬁ’nified energy and reserves from buildings, the proof of the
sumption and reserve schedule to the DSO.

. . unique solution of the combined aggregator and the DSO
2) The DSO collects information from the aggregator?roblem is presented in Section VII-B,

network and market and generates an optimal price
(DLMPs) to alleviate the congestion. )
3) After obtaining DLMPs, the final energy and reseryB: Iterative DLMPs (Method B)
schedule is calculated by each aggregator and submittedfrom Fig. 5, it can be seen that in this method, data
to the market/DSO. transfer requirement is replaced by the iterative procedure for
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;
calculating DLMPs i.e. iDLMPs. This decomposition is made b) The DSO evaluates line limit violations using (21)
possible because, in (16), the only coupling constraint is (16b). c) The global LMs are qudated using the subprojec-
To prove this, consider the Lagrange function of (16): tion as)\;:jrl ()\+, + oSk 4+
= C n sum  —sum i Pi, i
L(p; 1, A VS oo v ikvujk T Mgg, oy ) = 3) The procedure_ |s_ terminated pased on a predefined
T convergence criterion such as line loading tolerance or
S Jaums — A ) (DMip, . — 1)) improvement in the global LMs.
i€EN; + . . . . .
i ken Since (20) is differentiableg, € R is chosen as a small
+ Vi,k( Gh1 T AXL + BaggPi g + Ed; &) positive constant step size to guarantee the convergence [53].
F R (XL — AXPS +BISp,  + Edyg) Please note thatiaip, , is calculated based solely on global
N oT, LMs update. Since no data is shared among aggregators and
T (AT, — ) — D the DSO, the proposed method is completely decentralized and
i Mi—Jzum (—A*™™p, , + umzn) u?f Adiﬂva (18) can be deployed in a fully distributed manner.

To keep the formulation compact in (18), LMs which are
only connected to the input vector are considered. In (18}, Settlement:

it is evident that all aggregator’s equpallty w0 Vit € R™) For the pricex; ™~ and consumptiop; ,, the total cost of
and inequality(u; 2™, g 2™, pdift, pp it € R™) LMs are  congestiony (i) s.m and its components can be written as:

local, except the ones connected to constraint (16bpje. .

In the literature, these problems can be decomposed very 9(4) sum :g(')scthg(‘)con *g(i)cap (23a)
efficiently through dual decomposition [53]. In this method, i _ Ny + 23h
the master (DSO) problem is decomposed intodependent 9(8)sch k;\/t e p B (23b)
subproblems (aggregators). The global LM are then updated ) - T y

using the projected subgradient/gradient algorithm. 9Deon = Y (T = N)T(DMipi) (230

1) Subgradient AlgorithmConsider the partial Lagrangian keN:

of the DSO problem with the global LMs and the objective 9()eap = Z (AL =\ T fz( N, LP) (23d)
function: KEN, LP

LA ) = Y, Jsumiy + AT (DMip,;, — f1). (19)  where g(i)on is the cost for purchasing energy from the

keN: wholesale market. Based on the ratio of the aggregator’'s LPs

The dual of the above partial Lagrangian is given as: N; rp to the total aggregator LPs in the networ¥ ;p,

the theoretical capacity cost is distributed @8).q,. The
actual aggregator’s contribution to congestion is represented
by g(i)con- This settlement procedure is somewhat similar to
the one presented in [54]. The DSO merely acts as a mediator
and subsidizes/penalizes aggregators, based on the under/over
The sub-gradient S, of the negative of the dual ytilization of the total grid capacity, respectively.
d(—g)(\f"") € R is then defined as: The above presented settlement se(:kril/:s more intuitive from
_ . iDLMPs’ point of view. For the generatet],"~ and schedule
Sk = kg (DMipi) = fi (1) P, r» the DSO evaluates the cost of congestion contribution

) ) ) ! ) ) 9(i)con and grid capacityg(i).., for aggregatori. Using
With p7, is obtained after solving the following problem: g, “nrices are raised or lowered until they reach an equilib-
rium. The final relative congestion cos§(€)con — 9(%)cap)

g\ = infL(pi,kv A7)

T
= —)\;:7 |nf Z Jsum1 k )‘;:7 (DMtpz,k) (20)
L k kENt

'g"“” Z Aldlmpl WPik T35 pt kBPik (22)  gecides whether the aggregator should be charged more/less
VN keN: based on its over/under utilization of the allocated capacity.
subject to Using this integrated settlement scheme, competition among
(15b)— (1509) Vk € N;. aggregators could be created to push for efficiency in their

energy consumption. Furthermore, by settling the congestion
cost locally within the distribution grid, the presented scheme
also decouples transmission grid tariffs from the distribution
grid dynamics.

By observation, it can be seen tha{dlmpiwk is similar to
Adimp, - The only difference is that in (22)Aiqim, are
calculated iteratively using a dual sub-gradient method as:
1) Initialize the global LMs asA;”T > 0, and publish
Aidimp, ,, 1O each aggregator. Table |
2) Repeat SIMULATION SETUP

a) Each aggregatof solves (22) and submits its
schedulep; , to the DSO

Case Constrained LPs «y Line limits (kW) 3 SGD/(kWh}

1 6,7 0.15 1,200 1-107%
6, 7, 24, 25 0.25 1,300 1-1074

1The subgradient becomes a gradient when the objective function -is 2
differentiable
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Fig. 6. The modified RBTS distribution network from [55]. Daakd light Fig. 8. The cost optimal energy and reserve scheduling fa &fdl LP7
gray buildings are contracted under the aggregat¢tP6, 7, 16) and the without including DLMPs (top). Feasible temperature trajectories in spite of

aggregator2 (LP17, 24, 25, 38), respectively. the curtailing and non-curtailing of reserves (bottom).
ot ‘l‘:IUL‘P(il:‘IuLP’;:l‘rLPF)‘-rL‘P7***‘ Limi‘t
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Fig. 7. The energy and reserve price from the EMC Singaporp-{48serve ‘ Lo — e L LT : r,n,',‘,,

prices at time stef0 and 12 are synthetically increased to demonstrate the 1,000 .

effect of reserve provision on LP’s demand. Time pef2ddepresents exactly 2

" il

5 10 15 20 25 30 35 40 45 50
IV. SIMULATION SETUP AND RESULTS Time Periods
The methods presented above are evaluated on the |g 9. The aggregator (top) and the DSO (bottom) schedules,td the
4 Distribution Network of Roy Billinton Test System gepoyment of linear programming based DLMPs.
(RBTS) [55]. The performed modifications/assumptions for
this paper are presented in Fig. 6. The original networkhas
commercial LPs, with each LP comprisi consumers [55]. shows the divergence caused by linear programming based
Each consumer is modeled as a building contairibdloors DLMPs (5 = 0). It can be observed that the aggregator
and 10 zones. Using this setup, Table | shows the simulateshd the DSO schedule do not converge to the same value,
cases of this paper. In Table |, the imposed line limits constraivhich could make the distribution grid operation inefficient.
their respective LPs. To simulate a realistic, but computatioe avoid issues related to congestion and divergence, QP-based
ally manageable problem under the lack of available data, the
measured disturbances (shown in Fig. 2) are taken as a mean T \@uL‘p(;:‘uLp%:‘rm‘—rL‘m”l Limit |
value at each step. The disturbances experienced by each LP S I U OO U (OO AU AU AN N

are then calculated as normally distributed around that means %0 )
value. But no distinction is made in disturbances within one 500 HHHHH H H HH H H H 3
LP. This assumption is in line with the fact that commercial 0 HH H HHHHH H H

buildings and solar irradiation follow a diurnal pattern. The 0 5 1015200325 35 0

energy and reserve prices used for conducting simulations are .
shown in Fig. 7. The optimization problems are formulated in 1,500 |[==Yzre==Usrr BT Lo BRI LP7 - Limit |
YALMIP [56] and solved using CPLEX [57].  _ | UommTL w T

1,000 |-
B

A. Scheduling " HHHHH H HHHHH HHHHHHHH HHHH | |

For casel, Fig. 8 represents the response of buildings 0 5 10 15 20 25 35 40 45 50
without the introduction of DLMPs. Even though constraints T Perioas
for buildings are always satisfied, congestion is observed |nt§§ 0. The congestion free aggregator (top) and the DSOtofdt
distribution grid. The cause of congestion is a combination efhedules, due to the deployment of QP-based DLMPs.
high space conditioning requirements, just prior to office hours
and attractive reserve provision incentives. For cgsEig. 9 DLMPs are deployed. For caseFig. 10 shows the congestion
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Table I cost G(i)con). The reason for the high(i)..p is the larger
EFFECTIVEDLMPS (SGDKWH) (Adimp — Ck) number of contracted LPs by aggregaoy(i)..,, is observed
s to be lower due to smaller energy consumption of buildings
Case  LPs — 5 n 0 " " " connected at L®4 and LP5. Aggregator is also not charged
57 002 002 0046 0081 0132 0203 o030 forany congestion cost for case This is because none of its
Vo2 0 0 0 0 0 0 0 LPs are constrained in cateTo assess iteration requirements
9 6-7 0 0 0 0.004 0.032 0.071 0.127
24-25 0 0 0 0 0 0.007  0.044
100 T T T
1,400 kW
alleviation after introducing DLMPs. Due to the formulation LY Ef;ﬁﬂ Wi
of strictly convex QPs, both the DSO’s and the aggregator’s £ 60 01,250 kW ||
solution converge. This observation is in direct alignment with 3 R K
the theoretical proof presented in Section VII-B. It can be & % ’ A
observed that after applying DLMPs, the reserves are not 2 |
scheduled anymore. This is because the incentives from the
reserve provision are outweighed by the introduced DLMPs. 00 50 100 150 200 250 300 350 400 450 500
Intuitively, it can be said that if reserves are now scheduled at Iterations

these time periods, they will come at the cost of distribution o _
grid congestion. DLMPs experienced by the constrained Lg' t'ri%ﬁ'ted'\':ggﬁ{hﬁ_'terat'ons required to reach the globalnapm by the
for both cases are presented in Table II. Due to the relaxed line

loading, in comparison to cad¢DLMPs for case are smaller for ipLMPs, the simulation setup is repeate€d0 times for
and fewer than of case. In general, as a response to thgarious line loading limits. Results from caseare presented
congestion, the generated DLMPs reflect the load requiremeRtrig. 12. Due to the strictness of limits, an increase in the
network constraints and ex-ante market prices. iteration count is observed. The highest number of iterations
(368) is recorded for the line limit o, 150 kW. Due to strict

g 780 — T === g‘()\Jr’*) : energy requirements of buildings, the problem gets infeasible
8 7,300 ==~ 1 6760 7T ] for line limits lower than1,150 kW. Hence, this study can
B 72504 1 6750 | also help both the DSO and the aggregator to evaluate their
© 7200 q | = | | | systems with respect to given load and network requirements.
0 20 40 0 10 20 30 For this paper, the iDLMPs are implemented in a sequentially
‘ _ ‘ ‘ written program on &.4 GHz processor with 64 GB RAM.
a 6,000 \—9(1)5,“,,” 9(2) sum i If the formulation of the aggregator problems is performed
8, s — offline (5-10s), then each iteration také&s05-0.07s. Hence,
5 4,000 L——"" i 3/000 the worst case3(8 iterations) is simulated withifi4s, enough
O 2,000 - 17 for the 30-minute time interval of the NEMS. Of course these
0 20 0 2090 20 w0 values depend on the size and details of the aggregator model.
Iterations Iterations However, since the method is completely distributed, parallel
5 6o ‘ ‘_g(;)wp‘:g(i);h:‘g(,;)m | implementation would further decrease the execution time.
D 4,000 | | 4,000 .
g 2,000 | 1 2,000 i E § C. Economic Efficiency
0 1 ) 0 1 > This section demonstrates the superiority of DLMPs in
Aggregators Aggregators comparison to the common pricing structures of distribution

grids. To simplify the analysis, only energy prices are consid-
Fig. 11. Convergence of iterative method with the optimaligaiCasel is ~ €red in this section. Furthermore, to show the effectiveness of
plotted on the left and caskon the right side. DLMPs in multiple aggregator settings, only casésee Ta-
ble 1) is presented. The considered three types of prices
] are: (1) time varying energy prices\if,p), (2) flat energy
B. Cost Settlement and iDLMP Performance price (\gat = MearAmp)) and (3) the DLMP fqimp). It is
The main results from “Method B” are presented in Fig. 1lassumed that feedédr (F1) supplies power to L&Pand LF7,
It can be observed that the final solution of both methodghereas feedes (F3) energizes LB and 25).
converge to a unique value. Line tolerancelok 1073 is Figure 13 shows a comparison of imposed prices and the
chosen as the stopping criteria for the subgradient algorithresultant power flow across F1 and F3. From Fig. 13, it
Similar results are also obtained for the case of the dual obvious that with respect to adhering to the distribution
function as the stopping criteria. For both case&)s.., grid line limits, Aqmp Outperforms all other price structures.
improves at the end of the algorithm. This is because, &s explained before, this is because DLMPs reflect the true
comparison to aggregatbr aggregato? has a higher capacity behavior of distribution grid constraints. Faf,, and Agas,
utilization cost §(i).qp) @and a lower congestion contributionthe power flow across feeders deviates from the optimal
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A. iDLMPs

For iDLMPs, even though the solution is obtained in a com-
pletely decentralized manner, the number of exact iterations
required to converge to the optimal value are not known in
advance (see Fig. 12). Hence, the required IT infrastructure
is surely to get overburdened. As a result, some practical
consideration must be performed for deploying this method.
In [27]-[29], a functional clearing method (demand bids) with
a moving horizon (MH) implementation was proposed to solve
the iteration problem. The proposed approach used price-
based demand functions to efficiently clear the market non-
iteratively. Due to linear modeling of buildings, the functional
clearing method can also be easily adapted to this paper.
Furthermore, as a MH implementation for buildings, authors’
previous work [39] showed0 minutes time step and a MH of
1 day is sufficient for the optimal energy and reserve provision
from buildings. In [58], various methods are given to improve
the speed of convergence for distributed methods. As convexity
of the original formulation is preserved in these methods,
iDLMPs can also be efficiently adapted for them.

B. Buildings
The aggregator’s prediction of available flexibility in the

response. The imposed cost for both aggregators for variy§iding is most likely to be communicated through the build-

prices is presented in Table IIl. It can be observed that thigy management system (BMS), installed in most commercial

Table Il

CosT(SGD) COMPARISON FOR DIFFERENTTARIFFS

buildings. Hence, it is imperative that the theoretical building
model is compatible to be handled with the current BMS.
The authors in [59] discussed a virtual environment in which

Case interaction of buildings, communication networks and power
Aggregator  Cost (SGD) . - .

Aflat Almp Adimp systems was discussed. Similar to Section VII-A, the authors

9sch 3,510.9 3,561.9 3,590.8 in [59] also used the BRCM toolbox to obtain the reduced

1 Geon 0 0 554.8 order model of the actual building. Furthermore, the authors
Jear 100 ], 10 37238'296 also presented the necessary communication infrastructure

9sch 3,516.6  3,581.1 3,581.3 required for operating the DSO and users. For standardizing

9 Geon 8 8 3124500 communication between active participants of DR, opendADR

5:::1 3,516.6 3,581.1 3,207.3 was used [60]. As identified in [59], the work presented in this

paper also respects the practical and theoretical constraints.

usual price Structures‘lmp and Aﬂatl negative|y affect the This is because the adopted bU|Id|ng model is shown to
flexibility of demand side resources. In particular, this happeR§ €asily translatable to BRCM (see Section VII-A), while
because the cost of congestion is not represented in thiw presented distributed calculation method requires no data
prices. Hence, the comparison performed in Table Il sho§aring between different entities of the grid.
that with the presence of flexible loads in the distribution grid,
usual price structures are economically inefficient. For the case VI. CONCLUSION & FUTURE WORK
of this paper, aggregataris penalized by8.6% of its original This paper presents two methods for removing congestion
scheduling cost, as it causes more congestion than allowedhe presence of energy and reserve provision from build-
by the DSO. On the contrary, aggrega®is subsidized by ings. By incorporating grid line limits and building energy
approx.10.4%, due to its underutilization of the grid capacityrequirements, an integrated optimal solution is obtained, which
respects both network and load constraints, while maximizing
V. IMPLEMENTATION ASPECTS the utility of the overall system. Furthermore, using dual
The presented methods of this paper connect thermal digcomposition of the original problem, an economically fair
namics of buildings with the market-based control framewodettlement scheme for the congestion cost is also presented.
of distribution grids. Furthermore, this paper also proposée presented methods show high compatibility with the
a new iterative-based market clearing method (iDLMPs) faiready proposed cost-optimal congestion alleviation strate-
distribution grids. This section highlights the implementatiogies in the existing literature. Furthermore, this paper shows
aspect of this paper, compatible with the existing literaturthe improvement in distribution grid economics, due to the
In doing so, this section also gives direction for improvingeployment of DLMPs. However, it must be noted that in
practical realization of the presented methods of this papermrder to acquire optimal congestion-free energy and reserves
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from buildings, availability of high data sharing (DLMPs)}hat the BRCM provides an extensible, yet comprehensive tool
or communication infrastructure (iDLMPs) must exist. Théor modeling the thermal dynamics of a building.
future work regarding this paper includes: (1) the computation

requirements of DLMPs, and its deviation from the global \ Sim.[R-C] Sim.[BRCM] Measured\

optimality for the case of uncertainties in prices and energy 22 T 1 1 | | L=d | |

requirement and losses in the distribution grid, (2) the com- o 21| |

parison of demand-bid and iDLMPs and (3) various types of o

distributed optimization problems to calculate iDLMPs. © 201 :
VII. APPENDIX 190 é iO i5 éO ‘25 ‘30 ‘35 ‘40 ‘45

Time Period

A. Adapting the R-C Zone Model to BRCM

The main advantages of adopting the BRCM toolbox [61] t&g. 14. Temperature profiles of simulated zone models, (BRGM and R-
generate building models are: (1) it automates the connect%ﬁ“’de'( Section Il), and their comparison with the actual measurements [15].
of zone differential equation, and (2) it allows for bench-
marking and comparing of control/optimization techniques for
building simulation [18], [48], [49], [59]. Hence, the zoneB: Proof of Convergence of the DSO and the Aggregator
model described in Section I1-B1, is shown to be translatapfdPtimization Problem
to BRCM using the description provided below. The Karush Kuhn Tucker (KKT) conditions for the DSO

The advantage of the BRCM toolbox comes from its abilitproblem are:
to separate the dynamic thermal model (heat transfer between ; T T v+ _ JE e ne
rooms, walls etc.) and the static external heat flux (EHF) Gt T BPik + M D7 (A = Ay) + Bygerin + Bigy itk
tthde'I (ﬁolar atntg interfngl g?ins Ielt(é.i o:htheBl;li:Hs/:ng. Keepirt19 + A (3™ = ™) = AL i — u?f,;k =0 (27)

e similar notation of Section II-B1, the represents B
the interaction of thermal states (temperatures)with the A '<Z Z DMip; . — fi) =0 (28)
aggregated EHF inputs; as: iEN: keNy

. 5 A (= DMip; ), — fi) =0 (29)
Ty = Al‘t + Bqt(xt, Um,t, dt> (24) k i;;, kgt ’

In principle, ¢; can be considered as a response in the u;-f,i“m (AT, = uET) =0 (30)
fqrm of heat due to the influence of control mpufrsn(t) and B (—ATD, L+ UZLkm) —0 (31)
disturbancesd;) on the system. Fou,, number of inputs, the diff diff
thermal model in (24) is discretized in order to obtain a bilinear ik - (=APp) =0 (32)
model of the system (the time varying product of states and M?fif (=Pix) =0 (33)
disturbances with control inpufs) A AELAT >0 (34)

Tpy1 = Az + Byuy + Egdy 2 e, M?f;;k >0 Vi € N;,Vk € Ny (35)
+Z(E¢iuidk + Baw ik ) Ui, (25) and [(15b) - (_1_59)]. Similarly, for the aggregatomproblem,
= ’ the KKT conditions are:

In or_der to pring the mode! of (2_5) !nto the presented zone ¢ + Bp, . + MIDT(\NF = 20) + B;;gyik + ‘gggTV;j;
model in Section II-B1, two simplifications can be performed: psum” ( fsum ) —sumy _ AT diff _ Pik _ (36)
(1) it is assumed that the temperature experienced by the (o™ = b ) — Pike = i =

outside of the walls, solar irradiation and heat gains are knownz; ;" « (A*™"p; ;. — u*) =0 (37)
in advance (from historical data), and (2) only the HVAC'’s S (AR, uriny =0 (38)
mass flow is taken as a control input. Under these assumptions, .. diff ’ '

the input dependent stafe,,, and disturbancé’; , matrices Fik (=A Pik) =0 (39)
are concatenated intd and E, respectively. Similarly, the u,';j;j (=Pix) =0 Vk € Ny (40)

model is also extended to provide IL by introducing a reserv
vectorry. The resultant discrete time linear state space mo
then becomes:

png with [(35), (15b) - (159)].

By observing the DSO QP, one can see that the Hessian
matrix of the quadratic term in the objective function (16a) is

T = Ay, 4 Bu(ug + 1) + Edy (26) a positive definite matrix. Hence, the QP in (16), containing

he positive definite matrix in the objective function and affine

nstraints, is strictly convex. This problem yields a unique

Elmutl)ated z(;)?he tn,:r? d%';g';f tth(Tbmeasured tetmpeTature: It.l Rimizer and its KKT conditions are necessary and sufficient
€ observed that the OOIDOX TEPresENts a close sim 2]. Similar arguments apply to the aggregator’s QP.

ity to the actual temperature evolution. This validation enforc SSince a solution of the KKT condition of the DSO problem

As a validation, Fig. 14 shows the comparison between t

—sums* +sums* diff Pik . . 4k —x
2Refer to [61] for the more information regarding the thermal model anéplf,k’ R [ Sy (s * Hik > Vicjw V'Z,LZ*’ A AR
its corresponding matrices of BRCM. respects DSO problem constraints [(15b) — (15g), (16b)]
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and its KKT conditions [(27) — (35)]. This implies that a[18]
solution 7, ) is a solution of the DSO optimization problem.
Similarly, the solution of the aggregatds QP,

% —sumsx +sums* diffsx Py g ** Ccx nekk
(pi,kv i g > Mk o ik ik o Yikr Vik ) [19]

also satisfies its individual constraints [(15b) — (15g)] and
KKT conditions [(36) — (40), (35)]. By observation, the
DSO problem has all aggregator constraints embeded in[)
Hence,p; , is also a valid solution of the aggregator problem.
But the solution of the aggregator problem may not be the
solution of the DSQO’s problem, because each aggregator[é'ﬁ
not responsible for line limits [(28) and (29)]. However, due
to the solution of the DSO and aggregator problem being
unique, the solution of the aggregator problem must also Bg]
a valid solution to the DSO probletp;, = p;7.).
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