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Abstract—In the future, flexible demand with the combination
of renewable energy may hold the key for a sustainable power
grid. However, if not managed properly, this combination may
pose a threat to the reliability of the grid. In this paper,
we analyze the effect on the cost-optimal operation of the
flexible building in the presence of locally connected solar
photovoltaic (PV) system. Based on a detailed thermal model of
a building, an optimization based operational strategy has been
presented. The objective of this strategy is to optimally schedule
energy and reserve in the presence of flexible loads and the PV
system. Two forecasting methods, in a rolling horizon fashion, are
deployed to evaluate the interaction between the uncertain PV
output and the operation of the whole system. Case studies are
performed using the pricing framework of the National Energy
Market Singapore (NEMS). Results show that a trade-off exist
between the cost optimality of the overall system and the excess
PV output fed to the grid (reverse power flow).

Index Terms—Demand Response, Buildings, Reverse Power
Flow, Forecasting Methods, Photovoltaic, Cost Optimal.

I. INTRODUCTION

Taking into account the increased awareness for reducing
greenhouse gas emissions, renewable energy offers a cleaner
alternative to fossil fuels. For Singapore, distributed PV ap-
parently is the only feasible renewable option [1]. Aside from
its positive effects, due to its limited controllability, the instal-
lation of distributed PV entails new challenges. An extremely
important one being the power flowing back into the grid i.e.
reverse power flow [2]. This happens during times of high
solar irradiation, when power generated by PV installations
is higher than the local consumption of connected loads. In
principle, reverse power flow induces 3 major issues in the
distribution grid: (1) over voltage at the point of connection,
(2) transformer overloading, and (3) higher overall losses.

Another interesting option for improving the overall ef-
ficiency of energy systems is the introducion of demand
response (DR) programs [3], [4]. Aside from other objectives,
DR also helps to mitigate the variability of renewables. In
Singapore, the Energy Market Authority (EMA) has issued
instructions for the deployment of the DR program [5]. Build-
ings, due to high consumption share and inherent thermal
inertia, present as a natural candidate for providing flexible
demand. Althogh building owners would like to avail the
DR program to achieve a cost effective operational strategy,
however, this flexible demand can also coordinate with the

locally connected PV system. In this way, the variability of
PV system may be limited, improving building’s operational
cost as well as the reverse power flow at the point of common
coupling’s (POCC).

With respect to this paper, the closest work in the existing
literature has been reported in [6]–[10]. In [10], authors
considered the PV hosting capacity for the whole grid, whereas
in [6], deployment of storage devices was considered. Never-
theless, the analysis was conducted on the residential sector,
not translatable to commercial buildings. The published work
in [7], [9] focused on buildings, but comments regarding the
effect on the self consumption of PV strategy under imperfect
conditions were not found. In [8], authors discussed the
regulation and energy efficiency aspects of buildings. Hence,
according to the knowledge of authors, there has not been
any published work, which points out the connection between
the cost optimality of the energy procurement strategy by the
flexible building and its effect on the reverse power flow.

Hence, the contribution of this paper is threefold. First,
we present a cost-optimal moving horizon control strategy
considering options to: (1) shift energy or provide interruptible
load (reserves) and (2) consume or sell back the rooftop
PV to the grid. Second, the effect on the developed control
strategy due to the inclusion of imperfect forecasts is also
discussed. Third, a quantitative analysis is performed regarding
the operating cost of energy procurement and its relationship
with the self consumption of PV.

Section II explains the modeling procedure. The cost-
optimal model predictive control (MPC) strategy with the
real-time adjustment to account for imperfect PV forecast is
explained in Section III. Section IV and Section V provides
the simulation results and discussion of this paper.

II. MODELING ENVIRONMENT

A. Market Setting

In NEMS, for a flexible contestable building with a locally
connected solar PV, the following options exist:

1) Demand Shifting & Interrupting: The loads are allowed
to bid for reserves and energy provision through the Interrupt-
ible Load (IL) [11] and the DR [5] programs, respectively. The
payment for DR program is based on the overall load/price
reduction of the grid, whereas the IL are remunerated with
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respect to the reserve price of the market. Since we focus only
on one building in this paper, it is assumed that payments for
the modeled system is based on the uniform Singapore energy
price (ck) and reserve price (zk), provided by the Energy
Market Company (EMC) [5], [12], [13].

2) PV Settlement: In Singapore, for a contestable consumer
with less than 1MWac embedded PV, two options exist for
registering its system: (1) with Singapore Power Grid (SP)
[14], or (2) with the EMC [12]. For this paper, it is assumed
that the flexible building is operated under option 2. This
means that the excess PV fed back to the grid is compensated
based on the nodal price nk of the respected region.

B. Building Model
In our previous work [15], a single zone (room) model,

adopted from [16], was augmented to generate the model for
a whole building. Since the investigation for the aggregation of
buildings was performed, the proposed approach achieved an
adequate balance between the complexity and simplicity of the
model. Since here we only focus on a single building; a more
involved procedure, using a building-resistance capacitance
modeling (BRCM) toolbox, is adopted [17].

The advantage of the BRCM toolbox lies in its ability to
separate the dynamic thermal model (heat transfer between
rooms, walls etc.) and the static external heat flux (EHF)
model (solar and internal gains etc.) of the building. The
BRCM models the interaction of thermal states (temperatures),
xb
t ∈ Rnx with the aggregated EHF inputs, qbt as:

ẋb
t = Ab

tx
b
t +Bb

t q
b
t (xt, ut, vt). (1)

Where t, represents the thermal model. In principle, qb can
be considered as a response in the form of heat, due to
the influence of control inputs (ub

t ∈ Rnu ) and disturbances
(vbt ∈ Rnv ) on the system. Indices nx, nu and nv represent
the number of states, inputs and disturbances considered in
the model. The thermal model in (1) is discretized,
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to obtain a bilinear model of the system (the time varying
product of states and disturbances with control inputs)1. In
order to linearize it, 2 simplifications are proposed: (1) it
is assumed that the temperature experienced by the outside
of the walls, solar irradiation and heat gains are known in
advance, (2) only the HVAC’s mass flow is taken as a control
input. Under these assumptions, the input dependent state Bb

xu

and disturbance Bb
vu matrices collapse into the Ab and Bb,

respectively. The model is also extended to provide IL, by
introducing a reserve vector rbk. The resultant discrete time
linear state space model is represented as:

xb
k+1 = Abxb

k +Bb
u(u

b
k + rbk) +Bb

vv
b
k (3)

In (3), the dimensions of the vectors are: xb
k ∈ Rnx·nf ,

1Please refer to [17] for the information regarding more insight into the
thermal model and its corresponding matrices.
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Fig. 1. Validation of the BRCM toolbox with actual measurement from [16]
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Fig. 2. Assumed property values of the modeled building

ub
k ∈ Rnu·nf and vbk ∈ Rnv·nf , with nf as the number of floors

of the building. As a validation, Fig. 1 shows the comparison
between the simulated zone model (from the BRCM) and
measured temperature (from [16]). It can be observed that
the BRCM toolbox shows a close similarity to the actual
temperature evolution. This validation enforces that the BRCM
provides an extensible, yet comprehensive, tool for modeling
the thermal dynamics of a building [17].

Using the procedure described above, a Singaporean office
building is modeled. The values for the ambient temperature
and solar irradiation are taken from the actual measurement
station operated by the Solar Energy Research Institute for
Singapore (SERIS) [18]. Figure 2 shows the assumed property
values used to develop the building model.

C. Warm Water Storage Model

The Warm Water Storage (WWS) model is considered to
provide flexibility in the consumption of the building’s warm
water demand. In order to align with the above described mod-
eling philosophy for the building, the WWS is also modeled
as a discrete-time linear state space system. For each step k,
the temperature evolution of the water storage tank (xw

k ), due
to the supplied heat (uw

k + rwk ), the ambient temperature (vwk ),
and building’s warm water demand (dwk ) is modeled as:

xw
k+1 = Awxw

k +Bw
u (u

w
k + rwk ) +

�
Bw

v Bw
u

� �vwk
dwk

�
(4)

where,

Aw = (1− kA

mcp
)Δt, Bw

u =
Δt

mcp
, Bw

v =
kAΔt

mcp
.



Δt represents a constant discretized interval. Since the build-
ing is assumed to contain one storage tank, all variables in (4)
are scalar. Table I shows the adopted values for constructing
the WWS model [19].

D. PV Model
For the PV model, it is assumed that the net power supplied

per unit collector surface area (ui
k) is directly proportional

to the irradiation measurements from SERIS [18]. The total
power supplied upv

k by the PV model is

upv
k = ui

kApvηpv. (5)

Please refer to Table I for the assumed values of the PV model.

Table I
PARAMETER VALUES FOR THE WWS AND PV MODEL

Mass of the tank (m) 300 kg
Surface area of the tank (A) 7m2

Specific heat capacity (cp) 4.18 kJ kg−1 K−1

Heat transfer coefficient (k) 1.92Wm−2 K−1

Initial temperature (xw
0 ) 80 ◦C

Warm water demand (dwk ) (day/night) 16 kW / 2 kW

PV collector area Apv 400m2

PV system efficiency ηpv 12%

E. Overall System Model
The state space model for the whole system can be com-

pactly represented by augmenting (3) and (4).

xk+1 = Axk +Bu(uk + rk) +Bvvk (6)

The overall system model (6) distinguishes between the energy
consumed by the PV and the grid (7a). In (7b), upv

k and u
pve

k

represent the total PV production and the excess energy fed
by PV back into the grid.

uk =

�
ub,pv
k + ub,g

k

uw,pv
k + uw,g

k

�
(7a)

upv
k = ub,pv

k + uw,pv
k + u

pve

k (7b)

In (7), as well as throughout the paper, superscripts “g”, “pv”,
“b”, “wws” stand for the input power from/for the grid, PV
system, building and WWS, respectively.

F. Forecast Error
The solar irradiation can not be predicted accurately. The

imperfect forecast effects the prediction of both the building
and the PV model. Hence, in order to account for these
uncertainties, two types of forecasting errors are included.

1) Stochastic Error: The idea of this forecast originated
from [10], [20]. An increase in the error of the forecast is
assumed over the length of the horizon. This means that error
in the forecast increases linearly with a specific mean (µ)
and overestimation/underestimation (σ+/σ−) variance. For the
case of this paper, the maximum value of µ, and intraday σ+

and σ− are assumed to be 20%, 30% and 20%, respectively
[20]. Random integers (+1, -1) are used to randomly choose
between the over (+1) and underestimated (-1) error values.

2) Worst Case Error: To account for the worst case sce-
nario, this method adjusts forecast error values of the previous
method (upv+

k = max(upv
k , 0)).

Please note that due to the incorporation of the rolling
horizon control strategy (see Section III), some disturbances
experienced by the modeled system are automatically rejected.
But there are two main motivations, which necessitate the
analysis of the developed MPC under different forecast errors.
First, due to the participation in the DR and IL programs, self
consumption from PV may effect the cost estimation of load
operators, and failure to meet the scheduled load may impose
heavy penalties from the operator. Second, the deviation in the
optimal objective also introduces an uncertainty in the reverse
power flow at the POCC.

III. OPERATIONAL STRATEGY

Figure 3 depicts the basic control strategy of this paper. For
the whole time horizon N , the following procedure is repeated
at each time step k:

1) Based on the inputs, the MPC obtains the cost-optimal
energy/reserve (uk/rk) and PV (upv

k ) schedules (see
Section III).

2) For the case of mismatch (Δu
pvm

k = upv
k − u

pvm

k ) be-
tween the predicted (upv

k ) and actual PV output (upvm

k ),
real time adjustment procedure is invoked2:

a) If shortage in the PV forecast is
observed (Δu

pvm

k ≤ 0).
i) If the self PV consumption schedule is violated

A) Then purchase the missing energy from the
grid (u

pvsh,s

k ).
B) Else adjust the shortage of the PV out-

put, scheduled to be fed back to the
grid (u

pvsh,a

k ).
b) If excess in the PV forecast is observed (Δ ≥ upv

m )
i) Then adjust the excess PV output, scheduled to

be fed back to the grid (u
pve,a

k ).

Cost Optimization

The cost optimization of the MPC is performed as:

min
u∗,r∗,u∗pve

N−1�

k=0

ckuk + (ck − zk)rk − nku
pve

k + ρ�k (8a)

subject to
xc
k+1 = Axc

k +Buuk +Bvvk (8b)
xnc
k+1 = Axnc

k +Bu(uk + rk) +Bvvk (8c)
x−
k − �k ≤ xk ≤ x+

k + �k (8d)
u−
k ≤ uk + rk ≤ u+

k (8e)

0 ≤ ub,pv
k + uw,pv

k + u
pve

k ≤ upv
k (8f)

uk − rk, rk, �k ≥ 0 ∀k = 0, 1 . . . , N − 1 (8g)

Please note that in this context, optimality is measured in terms
of the minimization of the total cost. This linear optimization

2The superscripts “e”, “sh”, “s” and “a” denotes excess, shortage, settled
and adjusted PV outputs.
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problem results in the schedule for the optimal energy (u∗),
reserve (r∗) , and PV to be fed back to grid (upve

k ). From
the whole sequence, only the current inputs (u0

∗, r0∗, u∗pve )
are applied to the system, and the optimization is repeated
again with updated states. Due to the inclusion of ILs, state
trajectories for both of the curtailed (8b) and non-curtailed (8c)
are kept feasible (8d). To avoid infeasibility of the solution,
temperature constraints are softened by using a slack variable
�k. The slack is then penalized in the objective function using
an arbitrarily large constant ρ. Actuator limits of the whole
model are constrained in (8e).

IV. SIMULATION RESULTS

The proposed operational strategy of Section III is evaluated
for three cases. Case 1 represents the benchmark cost-optimal
strategy, that means without considering any uncertainty in
the PV forecast. Case 2 and 3 consider imperfect PV fore-
cast, following the method described in Section II-F1 and
Section II-F2, respectively.

Figure 5 shows the scheduling for the prices for 1st July
2015 [12]. The time interval of 30 minutes is chosen to coin-
cide with the market prices. For all cases, the first noticeable
observation is the IL procurement which only happens at time
step 12. As expected, during noon, most of the consumption
comes from PV. In the morning, during low space conditioning
and low warm water demand, excess PV is sent back to the
grid. Throughout the simulation, all temperatures and actuator
constraints are satisfied. Furthermore, as an evidence of cost
effective operation, one can observe that for the most amount
of time the building/WWS schedules its consumption, so that it
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stays at the allowable maximum/minimum temperature limits.
The deviation from these cost-effective states is only observed
for the instances of high monetary incentives or energy prices.
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Figure 6 shows the scheduling and mismatch of energy from
the PV system for all three cases. Favorable for the distribution
grid operation, case 3 does not inflict any extra PV feedback
to the grid (u

pve,a

case3,k = 0). This positive effect on the grid is
achieved at the cost of large real time adjusted energy flow
(u

pvsh,s

k,case3) from the grid (see Fig. 7). However, in contrast to
case 3, case 2 demonstrates a closer behavior to the cost-
optimal consumption strategy, i.e. case 1. Nevertheless, it can
also be noticed that the PV feedback to the grid (reverse power



flow), due to the stochastic error in the forecast, becomes
uncontrollable. The magnitude of the reverse power flow is
higher at the beginning and closing of office hours, when
the consumption requirements are lower. This information is
particularly important for the distribution system and building
operators, as it can help them optimize their individual systems
accordingly.
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Fig. 7. The consumption cost (top) and revenue (bottom) for the whole month
of July 2015.

To capture the long term effect on the cost of operation,
Figure 7 shows the cost/revenue of the modeled system for
all three cases. In comparison to case 1 (4,8382 SGD), the
operational cost for case 2 (4,8799 SGD) and 3 (4,9383 SGD)
shows an increase of 0.8% and 2%, respectively. Even though
case 2 exhibits a better cost effectiveness than case 3, but
it inflicts the POCC with 134.5 kW of unscheduled reverse
power flow.

V. DISCUSSION

In this paper, we analyzed the influence of the imperfect
PV forecast on the cost-optimal demand side services. Two
forecast errors are introduced to study their implication on the
control strategy. A moving horizon based stochastic error is
found to introduce an extra reverse power flow back to the
grid. Even though the introduction of the worst case error
removes the reverse power flow, but it comes at the expense
of higher cost of the overall operation. Hence, to account for
the uncontrollability of renewables, it can be stated that the
cost of optimality is to be compromised. Another conclusion
can be made regarding the timing of energy requirements from
loads, as synchronizing it with the nature of local PV improves
the efficiency of the overall system.

The control strategy, simulation setup and analysis of this
paper can still be considered as preliminary. As there are
still few interesting questions, remaining to be answered,
such as the influence of: (1) the distributed renewables and
flexible loads in the overall distribution grid economics, (2)
price uncertainty on the procurement strategies and (3) the
activities of various actors with respect to the ownership of
the distributed PV. We will pursue these research questions in
the future.
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