
Decentralized Non-Neighbor Active Charge
Balancing in Large Battery Packs

Alexander Lamprecht1, Martin Baumann2, Tobias Massier1, Sebastian Steinhorst2
1TUMCREATE, Singapore, alexander.lamprecht@tum-create.edu.sg

2Technical University of Munich, Germany

Abstract—Recently, active charge balancing of the cells in
battery packs has been gaining importance over state-of-the-
art passive balancing solutions. The main advantage of active
balancing lies in the ability to transfer charge between cells
rather than dissipating it thermally. This enhances the overall
efficiency and energy output of battery packs. In this paper, we
develop a new class of strategies for decentralized operation of
charge transfers between non-neighboring cells using appropriate
balancing hardware architectures. While the benefits of the
active balancing approach with a centralized controller have
been discussed in literature extensively, the implementation of
adequate strategies for scheduling charge transfers in decen-
tralized battery management systems, which promise to be
more robust and modular, have not been studied sufficiently
so far. Furthermore, existing decentralized strategies only deal
with charge transfers between neighboring cells. In order to
compare our novel distributed non-neighbor balancing strategies
to existing neighbor-only balancing strategies, we implement
them in an open-source simulation framework for decentralized
battery management systems. Our results show that we are able
to improve the two most important metrics of balancing time
and losses by up to 63% and 51%, respectively.

I. INTRODUCTION AND RELATED WORK

Electric Vehicles (EVs) are of central importance for the
future of sustainable mobility and reduced greenhouse gas
emissions. However, the widespread acceptance and applica-
tion of EVs is impeded by range anxiety and long charging
times. This drawback is mainly induced by the limited capacity
of current battery technologies. Fast charging of batteries,
which leads to faster cell aging and requires more frequent
battery replacements, is another disadvantage. Therefore, it is
crucial to optimally use the given capacity of a battery pack.

A typical 18650 Li-Ion battery cell has a voltage of 2.5 V
to 4.2 V with a capacity of 1500 mAh to 3600 mAh [1]. That
means, in order to provide enough power and energy for EV
applications, many cells need to be wired in parallel and series
connection. While parallel-connected cells are always at the
same voltage level and therefore the same SoC, cells which
are connected in series do not necessarily have the same SoC
(Fig. 1a). This effect is caused by slight differences between
cells which result from variations in manufacturing, aging or
environmental parameters such as temperature. When charging
or discharging, the SoCs of series-connected cells hence drift
apart. To accommodate for these variations, charge balancing
is applied to battery packs.
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(NN) BM and decentralized con-
trol unit (µC).

Fig. 1: Comparison of passive, neighbor-only and non-
neighbor balancing for a given SoC distribution. The dif-
ference in effectively usable capacity SoCeff is visible. The
underlying modular smart cell platform with balancing module
and microcontroller is displayed in 1c and 1d.

The state-of-the-art solution to this problem is to balance
the battery pack passively. This means dissipating charge from
cells with higher SoC thermally and therefore lowering the
average SoC of the pack to the level of the cell with the lowest
SoC. Fig. 1b visualizes this process. In contrast to passive
balancing where energy is simply discarded, active balancing
transfers excess charge from cells with higher SoC to cells
with lower SoC (Figs. 1c and 1d). This allows for drastic
reduction in losses but also requires additional circuitry to
facilitate the charge transfers [2].

Different Active Charge Balancing (ACB) architectures
have been discussed in literature [3] and can be divided
into two fundamental categories; neighbor-only and non-
neighbor balancing architectures. While neighbor-only archi-
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tectures only allow charge transfer between adjacent cells
(Fig. 1c), non-neighbor architectures enable direct charge
transfer between non-adjacent cells (Fig. 1d) [4].

The control of these balancing architectures is dictated by
dedicated balancing strategies. These strategies are a fixed
set of rules that aim to execute the balancing procedure
as efficiently as possible. Conventional Battery Management
Systems (BMSs) have a centralized computational unit that
controls the balancing procedure. In this paper, we focus on
a setup that uses decentralized controllers attached to each
individual cell; a concept known as smart cells [5]. Each cell
is equipped with a microcontroller, BM and communication
interface as seen in Fig. 1c and 1d. These systems promise
higher reliability and scalability due to their modular and
decentralized nature and hence are in focus for many future en-
ergy storage solutions. Minimizing the computational overhead
and communication effort through smart algorithms becomes
an additional optimization task.

Our specific contributions in this paper are:
• Based on the architecture introduced in Section II, in Sec-

tion III, we propose a novel decentralized non-neighbor
balancing strategy which drastically improves balancing
time, reduces balancing losses, and communication effort
between cells over state-of-the-art neighbor-only strate-
gies.

• In Section IV, we introduce a benchmarking methodol-
ogy which allows for comparison of different balancing
strategies based on balancing time and losses. The results
of this benchmarking methodology (Section V) confirm
the benefits in terms of time and losses arising from our
proposed strategies.

Our methodology builds on top of the open source cyber-
physical co-simulation framework presented in [6].

II. NON-NEIGHBOR BALANCING ARCHITECTURE

In order to perform ACB, a suitable balancing circuit is
required, which can transfer charge from one cell to an-
other. Since two cells can’t directly be connected due to
their voltage difference, a temporary energy storage element
is added to each cell. Architectures with different energy
storage elements have been proposed in the literature [7].
Each of these approaches comes with its own advantages
and disadvantages. In this paper, we focus on two established
inductor-based architectures (see Fig. 2) which have proven
to be highly efficient [8]. The difference between these two
architectures lies in whether or not they are restricted to charge
transfer between adjacent cells only. Architectures which fall
into the first category are called neighbor-only architectures
and typically require fewer components. Fig. 2a shows the
corresponding circuit, from now on referred to as “Narch”.

Architectures which are able to facilitate direct charge
transfer between non-adjacent cells are called non-neighbor
architectures. Fig. 2b shows the corresponding circuit, from
now on referred to as “NNarch”. This circuit contains a
charge transfer bus which increases the transfer efficiency over
larger distances. The direct charge transfer bus redundantizes
inefficient consecutive transfers, shuttled through multiple
neighboring cells, as it is necessary with the neighbor-only
architecture for transfers over long distances.
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Fig. 2: The charge balancing architectures “Narch”
and “NNarch” [4].

In contrast to conventional BMS with only one central
computational unit, we focus on smart cells with decentralized
BMS. We chose the open-source cyber-physical co-simulation
framework for smart cells in scalable battery packs from [6]
to efficiently simulate large scale battery packs. We amended
this framework to accommodate the non-neighbor balancing
architecture in Fig. 2b and implemented our proposed non-
neighbor balancing strategy which is explained in Section III.

III. DECENTRALIZED NON-NEIGHBOR BALANCING

The two main optimization criteria for balancing strategies
are balancing time and induced losses. The decentralized
nature of the smart cell approach requires decision making on
individual cell level. In this section, we therefore introduce
a novel decentralized non-neighbor ACB strategy. In the
following this strategy is referred to as “NNAdapt”

NNAdapt: The algorithm works as follows. A cell cr ∈ C,
where C is the set of all cells in the pack, requests charge from
a determined transfer partner ct if a set of conditions is fulfilled
and the requesting cell’s status is idle. A cell is considered
idle if it is currently not participating in a charge transfer.
If it is involved in a charge transfer process or is located
between two transfer partners, it is considered blocked. The
number of potential transfer partners is limited by a predefined
maximum transfer distance d̂. The transfer distance d describes
the distance between two charge transfer partners. A distance
of d = 1 describes a transfer between adjacent cells.

Cells located between cr and ct cannot be involved in any
other transfer due to the physical restrictions of the balancing
architecture. After one charge transfer, blocked cells are made
available for subsequent transfers.

Taking d̂ into account, a subset of reachable cells can be
calculated for a given cell ck, where k is the cell index with
1 ≤ k ≤ n and n the total number of cells. The limiting
indices of this subset k+ and k− are calculated according
to Equation 1. k+ stands for the cell closest to the positive
terminal and k− for the cell closest to the negative terminal.
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Equation 1 ensures that the limiting indices k+ and k− of each
cell ck are between 1 and n. These limiting indices are used to
determine the subsets of cells within the reachable distance d̂.
Subset C+

k represents all cells closer to the positive terminal of
the battery pack than cell ck. Subset C−

k contains all possible
transfer partners closer to the negative terminal.

Whether to request charge from subset C+
k or C−

k is decided
as follows. Let Z be the set of SoCs of all cells in C. Then
Z+
k is the set of SoCs of all cells in C+

k and Z−
k is the set of

SoCs of all cells in C−
k . Charge from a cell in subset C+

k is
requested if max

�
Z+
k

�
≥ max

�
Z−
k

�
. Otherwise, charge from

a cell in subset C−
k is requested. This is shown in Equation 2.

The determined cell ĉk with SoC ẑk is requested if zk < Z̄,
where zk is the SoC of cell ck and Z̄ is the average SoC of
the battery pack.
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Second, if min
�
Z+
k

�
< min

�
Z−
k

�
then čk is acknowl-

edged for a charge transfer according to Equation 2. The
transfer request from cell cmin.k with SoC žk is acknowl-
edged only if zk > Z̄, where zk is the SoC of the
transmitting cell. The balancing procedure is terminated if
∀ zk ∈ Z : zk ∈

�
Z̄ − ε, Z̄ + ε

�
.

The aforementioned set of rules is an enhancement of
the neighbor-only strategy min-max from [6] to utilize non-
neighbor transfers and already makes for a converging balanc-
ing strategy. However, since this straightforward strategy is not
utilizing the full potential of the non-neighbor balancing ap-
proach, we amend it in the following with a more extensive set
of conditions. Nonetheless, we use this intermediate strategy
for performance comparison and therefore will refer to it as
“NNMinMax”. With it, balancing losses can be reduced due
to the advantages of direct transfers. Balancing time however
can be longer than with conventional neighbor-only balancing
strategies due to the high number of blocked cells during long
transfers.

To counteract this drawback, we propose the adaptive strat-
egy “NNAdapt”. The fundamental idea of this strategy is to
make decisions not solely based on SoCs, but to use the cells’
idle states in combination with SoCs instead. The smart cell
approach allows us to broadcast the idle states of each cell to
the entire pack. With this knowledge, each cell ck is able to
detect the subset of all idle cells Cidle

k ⊂ C it can be engaged
in a transfer with. This means that there are no blocked cells
within a potential charge transfer path.

A cell ck requests charge if its SoC zk is below the battery
pack’s average SoC Z̄ and its SoC equals the minimum
SoC of the self-detected idle subset of cells min(Zidle

k ). Cell
ck determines the index of the cell with the highest SoC
max(Zidle

k ) within the reachable idle subset. ck consequently
requests charge from this determined cell ct.

The requested transmitting cell ct only acknowledges and
initiates the requested transfer if its own SoC is above the
battery pack’s average SoC, i.e., zt > Z̄. Moreover, it checks
whether its SoC is the maximum SoC in Zidle

k , i.e., whether
zk = max(Zidle

k ). A transfer will only be engaged with the
cell that has the minimum SoC min(Zidle

k ) within the idle
subset.

Furthermore, a cell ck only requests charge if it belongs
to the set of best possible transfer partners Cbt within a
determined distance d̂ and the subset of idle cells Cidle

k . Hence,
the transmitting cell only acknowledges a transfer if it also
belongs to Cbt.

Both cells belong to Cbt if their indices are between k+idle
and k−idle and their distance does not exceed the determined
maximum transfer distance d̂. In addition, there must not be
any other pair of cells within this distance with a higher SoC
difference than that between cj and ck.

The mathematical formulation of these conditions is given
in Equation 3.

cj ,ck∈Cbt⇐⇒j,k∈ [k+idle,k
−
idle]∧|j−k≤ d̂|∧

¬∃l,m∈ [k+idle,k
−
idle] : |zl−zm|> |zj−zk|

(3)

Up to this point, this strategy already leads to a high number
of concurrent transfers and therefore a favorable balancing
time. The focus on maximum SoC deviation, however, could
lead to transfers over long distances, effectively blocking large
parts of the battery pack. To avoid this, the maximum allowed
distance d̂ is reevaluated after each charge transfer based on the
transfer’s calculated efficiency η̃. The transfer efficiency η̃ is
calculated based on the energy differential in the transmitting
and receiving cells between the current time step (zr,zt) and
the previous one (z∗r ,z∗t ).

η̃ =
ΔEr

ΔEt
=

EC(zr)− EC(z
∗
r )

EC(z∗t )− EC(zt)
(4)

If η̃ drops below a predefined efficiency threshold, the
maximum permitted distance d̂ is decreased and broadcasted
to all cells. This effectively splits the battery pack into local
subsets and decreases the overall balancing time and losses.

The pseudo code in Algorithm 1 summarizes the NNAdapt
strategy.

Algorithm 1 Request and acknowledgment processes of
request-driven NNAdapt strategy for cell ck. Request policy
and acknowledge policy are true or false.

1: procedure REQUEST (to receive charge)
2: if request policy(ck)=true and status=idle then
3: determine transfer partner ct from best possible transfer

candidates in Cbt;
4: request charge transfer from cell ct within transfer dis-

tance d and the idle subset;
5: procedure ACKNOWLEDGE (to send charge to cr)
6: if Acknowledge policy and status=idle then
7: success=block cells(ct,...,cr);
8: if success then
9: ztb, zrb = zt, zr;

10: acknowledge request from cell cr;
11: transfer charge to cell cr for time Tm;
12: unblock cells(ct,...,cr);
13: η̃=calculate efficiency(ztb,zrb,zt,zr);
14: if efficiency η̃ < efficiency threshold then
15: decrease maximum transfer distance d̂ by 1;
16: broadcast distance d̂ to other cells;

Table I summarizes the request and acknowledgment poli-
cies for both Strategies NNMinMax and NNAdapt. The search
and identification of the best transfer Cbt within distance d̂ and
the subset of idle cells is included in these policies.



IV. BENCHMARKING METHODOLOGY

To allow a comparison of the results of the balancing
simulations produced by state-of-the-art neighbor-only and our
proposed non-neighbor strategies, we developed a sophisti-
cated benchmarking method. Currently, to the best of our
knowledge, there exists no standardized method to compare
ACB strategies. Our method supplies a theoretical absolute
baseline for balancing time and losses against which our
results can be compared. The details of this method are
explained below.

The main objective of ACB strategies is to decide which
charge transfer combination out of the set of all possible
transfers to select. This directly affects the energy dissipation
and time of the balancing process which in turn are the main
parameters to compare different balancing strategies. Due to
resistive losses occurring with each transfer, the amount of
energy dissipated depends on the total number of charge
transfers during a balancing process. In neighbor ACB, charge
transfers can only be conducted between adjacent cells, which
increases the total number of transfers and consequently the
losses. In non-neighbor ACB, charge can be transferred di-
rectly from one cell to another, which reduces the total number
of transfers. Though the losses for each single non-neighbor
transfer are higher than for neighbor transfers due to losses
in the additional components (Fig. 2), non-neighbor charge
balancing promises reduced overall losses as a neighbor-only
strategy would require d transfers to bridge the distance, where
non-neighbor strategies only require a single transfer [9].

Since it is not meaningful to compare the results of different
balancing strategies relative to the point of origin, we formu-
late a method to obtain a theoretical absolute lower limit for
balancing time and losses for a given random SoC distribution.

The theoretical limit calculation does not consider the block-
ing state of interjacent cells between two charge transferring
cells and therefore is not reachable in practice. Each cell,
however, is only allowed to participate in one charge transfer
at a time.

Theoretical Balancing Reference: The general goal is to
obtain theoretical baselines for balancing time and losses for a
given SoC distribution. To dismiss trivial cases, we only take
initial SoC distributions above a certain standard deviation into
account. Since the details of the initial SoC distribution have
a substantial influence on the performance of a given strategy,
it is important to consider a statistically significant number of
simulation runs and average the outcomes to obtain conclusive
results.

First, we focus on obtaining the baseline for the balancing
time. From the set of cells C we first pick the two cells
with the largest positive and negative SoC deviation. We

TABLE I: Request and acknowledgment policies for the non-
neighbor balancing strategies NNMinMax, and NNAdapt.

Strat. Request cr→ct Acknowledgment ct→cr
cr ct ct cr

NNMinMax zr<Z̄ zt=ẑk zt>Z̄ zr=žk

NNAdapt (zr<Z̄)∧
(cr∈Cbt)

ct∈Cbt (zt>Z̄)∧
(ct∈Cbt)

cr∈Cbt
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Fig. 3: Illustration of the realistic reference algorithm. Arrows
represent potential transfers for an exemplary SoC distribution.
Certain transfers are selected in order maximize performance
in either balancing loss or time.

successively match the cells with the second largest deviation,
third largest deviation and so on. Disregarding the resulting
losses or blocking states of the cells, this method guarantees
the fastest theoretically possible balancing process. We set the
resulting balancing time as the baseline of our benchmark.

Analogously, we define constraints to obtain the lower
limit of our balancing losses. Setting the number concurrent
transfers to one and the maximum transfer distance to the total
number of cells in the pack gives the baseline for the balancing
losses.

Realistic Balancing Reference: In order to obtain a
realistic balancing reference, we make one adjustment to
the aforementioned algorithm. Instead of executing n charge
transfers, we only consider transfers which do not violate the
blocking conditions. We also take the architecture and the
distance between possible transfer partners into account. For
calculating realistic references, the algorithmic evaluation of
a given SoC distribution is important.

Fig. 3 shows an exemplary battery pack consisting of seven
cells. The black arrows represent potential charge transfers.
Visualized potential transfers follow the convention that they
should transfer charge from a cell with above average SoC
to a cell with below average SoC. Moreover, charge should
be transferred towards the direction of a subset with lower
average SoC. Analogous to the theoretical balancing reference,
we implement two transfer selection procedures. The loss
constraint procedure aims to minimize balancing losses while
having a low number of concurrent transfers, which leads to
longer balancing time. To achieve that, all potential transfers
are sorted in descending order by SoC difference. A transfer
is characterized by the cell number of the transmitting cell,
the cell number of the receiving cell, the local distance and
the difference in SoC between them. Transfers with high SoC
gradients are preferred. Transfers sorted by SoC are gradually
added to a list if they can be executed at the same time. In the
example in Fig. 3, the loss constraint selection only chooses
transfer (7) without any concurrent transfers.

By contrast, the concurrency constraint selection method
achieves as many concurrent transfers as possible without
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considering the efficiency of each single transfer. Thus, this
selection method focuses on low balancing time. To achieve
this, all possible transfers are sorted in ascending order by
the charge transfer distance in cells between transfer partners.
A potential overlapping transfer substitutes another transfer in
the execution list, if its SoC difference is higher. Naturally the
loss constraint and the concurrency constraint are mutually
exclusive.

Comparison of Strategies: Our benchmarking method
allows us to evaluate different balancing strategies executed
on various architectures. Since the initial SoC distribution
substantially influences the performance of a given balancing
strategy, comparisons are made on the basis of a statistically
significant number of randomly generated initial SoC distri-
butions. Simulation results are compared regarding balancing
time and losses. For a set of initial distributions, the results
yield five significant values: the four extrema for minimum
and maximum balancing time and losses as well as the
resulting average balancing time and losses. Fig. 4 shows an
exemplary visualization of these values in a 2D scatter plot
of time and losses. The solid lines represent the time and
loss limits, containing all calculated results for a given set
of initial distributions. Dashed lines give the coordinates of
the calculated average values for balancing time and losses.
The dotted red box visualizes the theoretical optimal limits
for a given architecture. The simulation results for a given
strategy are contained within the black lines. The deviation
of the simulation results from the optimal solution becomes
manifest in the surface area of the containing boxes.

Each strategy can therefore be characterized sufficiently by
its minimum (tmin/lmin), average (tavg/lavg) and maximum
(tmax/lmax) points.

V. RESULTS

With the help of the cyber-physical co-simulation frame-
work the balancing process for an EV-typical battery pack
with 96 cells in series and a capacity of 23 kWh, as it is
used in the 2011 Nissan Leaf [10], is simulated. 100 randomly
generated initial SoC distributions with a maximum variation
of 3 % are generated and the balancing process simulated
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Fig. 5: Balancing process for an exemplary initial SoC distri-
bution in a battery pack for strategies BA, NNMinMax and
NNAdapt.

for different strategies. To evaluate our proposed strategy
NNAdapt we chose the three best performing decentralized
neighbor-only strategies from [6] as basis for the comparison.
These strategies are BelowAverage (BA), Boundary (Bou) and
MinMax. For fairness, The simulations for the neighbor-only
strategies are conducted on architecture Narch while the non-
neighbor strategies utilize NNarch (See Section II). For both
architectures the same constant balancing current is assumed.

A detailed view of the results of the simulation of the
balancing procedure is displayed in Fig. 5. The graphs show
the development of the cell SoCs for an exemplary initial SoC
distribution over time using the strategies BA, NNMinMax and
NNAdapt.

While the BA strategy focuses on successively bringing
the SoC of particular cells to the average SoC the NNMin-
Max strategy mainly facilitates charge transfers between the
extrema of the current SoC distribution, resulting in a low
number of concurrent transfers.

The overall results are a balancing time of 1.65 h and
a final pack SoC of 68.29 % for the BA strategy and a
balancing time of 1.87 h and a final pack SoC of 68.37 %
for the NNMinMax strategy. While the NNMinMax strategy
can utilize the advantages of the non-neighbor architecture in
reducing losses, it does it at the cost of a very low number of
concurrent transfers, resulting in longer balancing times than
the BA strategy. In contrast, the NNAdapt strategy achieves
considerably more concurrent transfers due to its sophisticated
set of rules. Hardly any SoCs remains constant for long.
NNAdapt balances the pack to the termination threshold of
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NNMinMax and NNAdapt. The simulation results arise from
100 initial SoC distributions with a maximum deviation of
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0.2 % in 0.63 h and achieves a final SoC of 68.40 %, while
remarkably reducing the balancing time by 66 % compared to
NNMinMax and by 61 % compared to BA.

TABLE II: Comparison of balancing times and losses of non-
neighbor ACB strategies with the NNarch balancing architec-
ture.

strategy time in h losses in Wh
min avg max min avg max

NNMinMax 0.93 1.29 2.77 5.61 7.66 16.16
NNAdapt 0.48 0.89 1.89 3.58 4.96 8.66

We conduct the simulations for a total of 100 random initial
SoC distributions. Each simulation results in a tuple of overall
balancing time and losses, characterizing the used strategy. All
resulting tuples are plotted in the scatter plot in Fig. 6. Table II
summarizes the simulation results for our proposed strategies
NNMinMax and NNAdapt with the help of the minimum,
average and maximum balancing times and losses. The table
underlines that strategy NNAdapt results in lower average
balancing time and comparable losses to strategy NNMinMax,
while the variance of these values is greatly reduced.

Table III shows a comparison between our proposed strat-
egy NNAdapt, the intermediate strategy NNMinMax, and the
state-of-the-art neighbor-only strategies regarding the resulting
average balancing losses and times and the corresponding
variance. This direct comparison is meaningful, because of the
theoretical limits obtained from the benchmarking methodol-
ogy introduced in Section IV. All values are normalized to
these absolute theoretical limits, which are a balancing time
of 8.5 min and a balancing loss of 2.00 Wh. Table III shows
that our proposed strategy is not only significantly superior
in terms of balancing losses and time, but also result in a
much more consistent balancing process. NNAdapt improves
the efficiency of non-neighbor balancing, with only a factor
of less than 2.5 between the simulated loss results and the

TABLE III: Comparison of characteristic values of the dis-
cussed neighbor-only strategies BA, MAX, Bou and the
proposed non-neighbor strategies NNMinMax and NNAdapt,
normalized to the theoretical limits.

strategy time losses
avg spread avg spread

BA 12.07 15.40 12.38 14.34
MinMax 11.25 10.64 17.36 16.23

Bou 14.69 20.75 9.39 20.51

NNMinMax 9.08 10.40 3.83 4.25
NNAdapt 6.28 6.98 2.48 1.85

theoretical absolute minimum.

VI. CONCLUSION

In this paper we introduced a novel non-neighbor ACB
strategy for battery packs with decentralized BMSs. We vali-
dated our results with the help of an open source simulation
framework for decentralized battery management systems. We
extended this framework to support non-neighbor architectures
and defined a benchmarking method to calculate a theoretical
baseline of balancing losses and time. This baseline serves
as foundation for comparing the results from both neighbor-
only and non-neighbor strategies. We show that our proposed
strategy reduces the average balancing time by up to 63% and
average balancing losses by 51% compared to state-of-the-
art neighbor-only balancing solutions. Furthermore we show
that our strategy approaches the theoretical limits especially
with regard to balancing losses, making it highly suitable for
application in EVs.
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