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Abstract: Being a small well-organized city state, Singapore 

appears to be an ideal place to establish a fully electric road 

transport system. In order to analyze the challenges and 

potential of electric mobility (or “electromobility”), TUMCREATE 

Ltd., a company funded by Singapore’s National Research 

Foundation, was launched in 2011 as “Centre for Electromobility 

in Megacities”. During the first five years, the research at 

TUMCREATE covered everything “from the molecule to the 

megacity”, i.e., from fundamental research on new materials for 

energy storage systems to battery cells, battery packs, vehicle 

technology, in-vehicle electronics to road infrastructure and the 

power system. One outcome was a prototype for an electric taxi 

for tropical megacities called EVA with a battery capacity of 

50 kWh and fast charging capability of 160 kW. This paper 

presents a review of past and ongoing activities in the field of 

integration of electromobility into Singapore’s power system. The 

focus of this paper lies on charging of electric vehicles (EVs). 

Results show that the integration of EVs into the power system 

is feasible, leads to lower emissions and can even offer new 

services and support integration of renewable energies.  

1. Introduction 

Singapore is a small island city state with a land area of 

approximately 720 km² and 5.6 million inhabitants.[1] The total 

number of road vehicles amounts to about one million.[2] The 

majority of these are private vehicles (approx. 537 000). 

Commuters are encouraged to take public transport instead of 

private vehicles.[3] For this reason, high taxes are imposed on 

private vehicles and drivers have to get the Certificate of 

Entitlement (COE) first, in order to have the right to drive a car 

on Singapore’s roads. In 2016, the share of total final energy 

consumption of the transportation sector was approximately 

17 %.[4] By 2020, it is expected to contribute to 14.5 % of 

greenhouse gas (GHG) emissions.[5] 

The number of electric and hybrid passenger vehicles globally 

increased from 350 000 in 2013 to more than two million 

vehicles at the end of 2016.[6] The increase in the EV population 

results from a combination of factors: incentive schemes that 

promote sustainable mobility options, changes in drivers’ 

perspective towards green transportation modes and the 

constant advancement of lithium-ion and battery technology in 

general.[7] Countries like Norway, the Netherlands and Sweden 

lead the way in the number of new registrations of EVs 

compared to the total vehicle fleet.[6]  

In Singapore, electromobility is seen as the key way of 

achieving the global carbon emission reduction for complying 

with both 2020 and 2030 goals of the United Nations 

Framework Convention on Climate Change. The Energy 

Market Authority (EMA) and the Land Transport Authority 

(LTA) of Singapore launched an EV test-bed in 2010. A survey 

revealed that the high purchase cost, concerns over range 

anxiety and the availability of personal and public charging 

infrastructure were the main concerns for users that will 

prevent them from buying an EV.[8] As a second phase of the 

EV test-bed, the LTA and the Singapore Economic 

Development Board (EDB) are expecting to introduce a car 

sharing program which includes up to 1000 EVs and the 

charging infrastructure required for supporting this fleet. The 

program is scheduled to start operation in late 2017.[9] 

Aside from greenhouse gas emissions, switching to EVs would 

also reduce emissions of pollutants, heat and noise. It would 

also lower Singapore’s energy demand – particularly of oil – 

due to the higher efficiency of EVs. However, it would increase 

electricity demand and consequently demand for natural gas 

as the major portion of Singapore’s electricity supply is 

covered by gas power plants. Natural gas is mainly imported 

from Malaysia and Indonesia. As natural gas power plants are 

rather clean, polluting emissions would decrease (see Section 

5). Further emission reduction could be achieved by using 

solar photovoltaics (PV) which could be installed in Singapore 

(see Section 2.1).[10] 

Further challenges of electromobility include the charging 

infrastructure and scheduling, and the integration into the 

power system and energy market. The average daily mileage 

of private cars is very low and cars are usually not parked at 

the side of the road, but in car parks. Hence, it is sufficient to 

equip car parks with charging stations instead of developing 

an on-the-road charging infrastructure. Due to the low mileage, 

fast charging is usually not required, such that the impact on 

the power system would be rather low. Car park operators 

could act as providers of ancillary services (see Section 4.1). 

However, electric public transport vehicles such as taxis and 

buses require fast charging due to their high mileage and low 

standstill times. This will put additional strain on the grid – 

particularly the distribution grid – and require measures such 

as demand response. Vehicle battery constraints have to be 

observed in order to prevent premature battery degradation. 

The integration of EVs into the grid has been discussed in 

numerous studies – usually for particular places or cities. A 

first charging optimization method for passenger cars in 

Singapore was presented in 2007.[11] Recent studies 

worldwide focus on smart grid applications including demand 

response and integration of renewable energies.[12-15] The 

implementation of charging infrastructures for electric vehicles 

in different parts of the world has been discussed extensively. 

In Micari[16], vehicle and charging station technology, as well 

as traffic flow are considered and applied for a road network in 

Italy. In Awasthi[17] A hybrid optimization algorithm combining 

heuristics was used for charging infrastructure planning in the 
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distribution grid. A case study in an Indian city was shown. An 

approach incorporating load profiles and traffic constraints was 

presented by Xiang.[18] It was applied on a fictitious network. 

The case of Singapore is rather unique though, with cars 

parking almost entirely in car parks and most vehicles usually 

not leaving the city state during the day. 

With decreasing battery costs and sizes, electrifying public 

road transport – which mainly comprises buses – has become 

an interesting option as well. With no direct tailpipe emissions, 

overall better energy efficiency and increased comfort for 

commuters (due to lower motor noise and fewer motor 

vibrations), electric buses can solve a number of issues 

simultaneously.[19] However, battery constraints may result in 

limitations on the available operation range.[20] Then again, 

buses run on fixed routes which makes charging scheduling 

more predictable and planning of a charging infrastructure 

easier. Various studies[21-23] and field tests[24-27] were 

performed in recent years and many cities in the world are 

currently planning to integrate electric buses in pilot phases.[28] 

However, these studies have mainly been limited to case 

studies at a limited scale or pilot projects which only covered a 

few vehicles, a small bus network or a few selected routes 

from a bigger transit network. 

This review summarizes TUMCREATE’s research and results 

in the field of electrification of road transport since 2011. We 

include both previously published work and recent results. Our 

research comprises the analysis of the demand of different 

types of EVs, their impact on the power system and potential 

contributions towards a smarter grid. Section 2 contains an 

overview of Singapore’s power system and describes the 

model used throughout the paper. Section 3 covers different 

aspects of the electrification of private passenger cars, taxis 

and public buses in Singapore. In Section 4, we discuss 

several smart grid applications of EVs. Section 5 presents the 

emission reduction potential of electromobility in Singapore. 

Section 6 concludes the paper. 
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2. The Power System of Singapore 

Figure 1. Development of Singapore’s power generation mix (all figures in 

percent). 

During the past two decades, Singapore’s power generation mix 

underwent a major shift from oil to natural gas. This was mainly 

due to the increasing oil price, higher efficiency and lower 

emissions of natural gas power plants. In the year 2000, the 

share of oil in the power generation mix was 81.5 %. By today, it 

has decreased to 0.8 %, whereas the share of natural gas 

increased from 18.5 % to 95.2 %. The rest comes from coal, 

waste incineration and biomass. Fig. 1 shows the development 

of the power generation mix from 2000 to now as published in 

EMA’s yearly “Singapore Energy Statistics”.[4]  

In 2015, the grid emission factor was 431 g CO2eq/kWh. In 2016, 

the installed capacity was 13.4 GW, whereas the peak load was 

just 6.9 GW. The amount of total electricity generated in 2016 

was approx. 50 TWh. 

2.1. Potential for renewable energy sources in Singapore 

Due to its small land area, the potential for alternative emission-

free forms of energy is rather low. Energy from PV may be the 

only feasible source. In 2014, the Solar Energy Research 

Institute of Singapore (SERIS) published a solar photovoltaic 

roadmap for Singapore[10] which claimed that in the best case, 

by 2050, up to 10 GW of PV could be installed. This includes 

technological progress which means that in 2050, the efficiency 

of solar cells will be considerably higher than today. PV panels 

could be installed on rooftops, facades, artificial floating islands 

etc. These installations could cover 30 % of Singapore’s yearly 

electricity demand if the demand does not significantly increase 

by 2050. An alternative could be to import electricity from other 

ASEAN1 countries. We performed various studies which show 

that interconnecting countries in ASEAN could lead to cost and 

emission reduction in the region.[29,30] As long as the generation 

potential in Singapore is high enough such that temporary 

 
1 Association of Southeast Asian Nations (an organization comprising ten 
countries in Southeast Asia) 

disconnection from the ASEAN grid does not lead to blackouts in 

Singapore, this option could be considered in the future. 

2.2. Modeling of Singapore’s power system 

Some standard models exist to model power systems, such as 

the TIMES model generator.[31] Initially, we used TIMES, to set 

up several scenarios to investigate the development of the 

electricity demand and supply including photovoltaic power and 

electrification of transport.[32,33] 

In order to analyze the impact of EVs on the power system in 

more detail, another model was set up in 2012 based on the 

URBS model.[34] Our model has been continuously extended 

since then and updated with the current generation system of 

Singapore. A purely linear version is available as open source 

software package. In the model, overall costs C are defined as 

the sum of investment costs Cinv, fix costs Cfix, fuel costs Cfuel, 

variable costs Cvar and start-up costs Cstartup which are calculated 

from input data: 

  

 𝐶 =  𝐶𝑖𝑛𝑣  +  𝐶𝑓𝑖𝑥 + 𝐶𝑓𝑢𝑒𝑙 + 𝐶𝑣𝑎𝑟 + 𝐶𝑠𝑡𝑎𝑟𝑡𝑢𝑝 (1) 

In the optimization, total costs are minimized. The user can set 

up the generation system with generation capacities, efficiencies, 

and maximum and minimum power output. Generation from 

intermittent renewable sources and demand are modeled as 

time series. Our version of the model is a mixed-integer linear 

model for more accurate modeling of start-up costs. Similar to 

the demand time series, electricity demand of EVs is integrated 

by using mobility models which output the aggregated demand 

of all vehicles in form of time series. The model has been used 

intensively for private EVs. After finishing our research on 

energy and charging demand for electric taxis and public buses, 

in the near future, we will perform similar analyses for these 

types of vehicles as we did for private EVs. 

3. Electrification of Singapore’s Road 
Transportation System 

3.1. The current transportation system 

In order to avoid traffic congestion, the use of private passenger 

cars is discouraged in Singapore, while the public transport 

network is constantly being extended and improved. Today, five 

MRT (mass rapid transport) train lines are in operation. One new 

line is currently being under construction and two more are 

under planning. By 2030, the length of the MRT network will be 

about 360 km, i.e., twice as high as in 2013. Within the Bus 

Service Enhancement Program (BSEP) that was launched in 

2013, the number of public buses has been increased by 1000 

by 2017 compared to 2012 numbers. The number of bus 

services has been increased by 80.[35] With high taxes being 

imposed on private cars and drivers having to get a Certificate of 

Entitlement (COE) before being allowed to drive their car on 

Singapore’s roads, the number of private passenger cars is not 

expected to increase a lot during the next years. Only a limited 

81.5
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number of certificates is issued every year in a bidding system. 

In fact, the number of private passenger cars decreased by 

approximately 3000 from 2013 to 2014. In 2014, about 537 000 

(55 %) of Singapore’s vehicles were private passenger cars. The 

number of buses and taxis was 17 500 and 28 700 respectively. 

3.2. Electrification of different vehicle types 

The charging requirements for different vehicle types depend 

heavily on their driving profile and mileage. In Singapore, private 

cars have an average yearly mileage of 17 500 km[2] which 

corresponds to an average daily mileage of 48 km. Assuming an 

average speed of 30 km/h to 40 km/h, private cars are parking 

for more than 22 hours a day. Hence, fast charging may hardly 

ever be necessary for private EVs, but in contrast, they offer 

flexible energy demand. The charging energy for EVs can be 

distributed in an intelligent way over the day such that on the 

one hand despite their high number, their impact on the power 

system can be kept low, and they can even offer ancillary 

services and help integrating high shares of fluctuating 

renewables (see Section 4). 

Buses and taxis however, may require fast charging and 

consequently offer less room for flexible scheduling. In the 

following subsections, we will present the methodology and 

results of our research on the impact of electrification of private 

passenger cars, taxis and buses on the power system. 

This paper considers only unidirectional power flow from the grid 

into the vehicle. Although some literature considers vehicle-to-

grid (V2G) as a viable and even profitable way for EVs to 

receive incentives[36-39], concerns like battery degradation due to 

excessive cycling, high battery replacement costs and range 

anxiety may discourage private drivers to participate in V2G 

programs. Participation in V2G programs requires vehicles to 

stay available even after the charging operation has been 

completed. Viewing that the goal of public EV operators is to 

provide a reliable and cost-effective service, increase in 

charging infrastructure cost and vehicle underutilization are 

viewed as the main reasons preventing participation of public 

EVs in V2G programs. 

 

3.2.1. Private passenger cars 

In Singapore, private passenger cars mainly park in car parks. 

Hence, these are the only location for charging stations we 

consider. In the long run, car parks offer the development of an 

affordable charging infrastructure as installations can be shared 

by many car owners. In order to determine the spatiotemporal 

charging demand, a mobility model was developed first. For 

charging, it is important to know where and when cars are being 

parked in car parks such that they are available for charging. 

The initial model was designed in 2012 and had been improved 

and extended in the following years. It is based on Singapore’s 

official HITS (household income and travel survey) data and 

publicly available occupancy data of different car parks in 

Singapore. All this information has been incorporated into an 

agent-based simulation model which reflects the parking and 

driving behavior of people in Singapore. The final model was 

published in 2015.[40] It requires the number of electric cars and 

days to simulate as input, and the temporal resolution of the 

simulation. A state machine is used to generate trips. The 

probabilities of each transition from one state to others are 

based on the aforementioned data. The model includes different 

types of passenger cars with different power demand and 

battery capacities. The battery capacities in the model range 

from 13 kWh to 55 kWh with an average of 24 kWh. For each 

trip, the energy demand is calculated. During parking, the cars 

are available for charging.  

An extended version of the power plant model introduced in 

Section 2.2 with mixed-integer variables was used for this 

analysis. In this model, all cars are aggregated. This yields the 

available energy the cars can be charged with in each time step 

of the optimization of the power plant operation. How much 

energy to charge during each parking period, is up to the car 

owners. Based on this information, different charging strategies, 

i.e., how to distribute the charging energy over each parking 

period, can be analyzed. The following four charging strategies 

were considered in this analysis: 

• Dumb: Whenever a car is plugged in, it is being 

charged with the maximum available power. 

• Mean: The required charging energy is distributed 

evenly over the parking period. 

• Smart: The car is charged such that it is cost-optimal 

from power system perspective. 

• Smart plus: This is the same strategy as smart with 

consideration of regulation and reserve. 

Various scenarios with up to 600 000 electric passenger cars 

were analyzed. Table 1 shows the relative increase of overall 

costs, CO2 emissions and power plant start-ups for dumb and 

smart charging and 200 000 and 600 000 EVs. The number of 

start-ups decreased for all cases except for 600 000 EVs and 

dumb charging. 

Table 1. Increase of overall cost, CO2 emissions and number of power plant 

start-ups in percent for different numbers of EVs and different charging 

strategies. 

Increase [%] 
Number of EVs (charging strategy) 

200 000 
(dumb) 

200 000 
(smart) 

600 000 
(dumb) 

600 000 
(smart) 

Overall cost 2.0 1.8 6.0 5.2 

CO2 
emissions 2.0 1.7 5.8 5.0 

Number of 
start-ups ‒1.0 ‒3.0 5.0 ‒3.0 

The load curve for 600 000 electric cars on a weekday in 2012 is 

shown in Fig. 2. The gray curve shows the load without EVs. 

The other curves show the load including EVs for the first three 
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different charging strategies. For smart charging, a high portion 

of the additional demand is shifted to the night time and the load 

curve becomes almost flat during the day. For dumb charging, 

the peak load increases by 300 MW, for mean charging by 330 

MW, and for smart charging it increases by less than 200 MW. 

On other days, increases of up to 400 MW have been observed 

for dumb and mean charging. 

 

Figure 2. Load curve over one day without EVs (gray) and for different 

charging strategies. 

Generally, increasing the peak load should be avoided and, as 

can be seen in Fig. 2, smart charging also leads to higher ramps 

in the morning and evening, which puts additional strain on the 

power plants. In a later study, we incorporated these factors and 

included the integration of photovoltaics (see Section 4.2). 

In addition to the temporal distribution of the charging demand, 

we looked at the spatial distribution of the charging energy 

based on the mobility model. Fig. 3 shows the spatial distribution 

of the charging energy for 500 000 private EVs on a weekday. 

The maximum occurs in the east of Singapore where many car 

owners live. As information on Singapore’s distribution grid is 

unavailable, the impact on it could not be quantified. But the 

information where most charging demand can be expected can 

act as a guideline for the power grid operator. 

 

Figure 3. Spatial distribution of the overall charging demand for 500 000 

electric passenger cars on a weekday. 

3.2.2. Taxis 

Taxis are an important mode of transport in Singapore since 

private cars are expensive and due to governmental restrictions, 

their number is limited. Switching to electric taxis offers more 

comfort for drivers and customers and reduces emissions. Even 

though taxis in Singapore represent only 3 % of the vehicle 

population, they account for 15 % of the mileage of all vehicles. 

Many taxis drive in two shifts and reach mileages of up to 

750 km per day according to our analysis. In contrast to private 

cars, electric taxis therefore require larger batteries and fast 

charging. Hence, an optimal charging infrastructure for electric 

taxis is harder to design.  

The aim of this study was to develop and implement an 

algorithm which optimized the placement of charging station with 

respect to the number and vehicle types of electric taxis. Based 

on the optimization results, recommendations regarding the 

development of a charging infrastructure and the operation of an 

electric taxi fleet were derived. 

This project was done in collaboration with SMRT Taxis, a 

Singaporean taxi company, and consisted of three main parts. 

The first part was to get a deep understanding of today’s taxi 

operation. Therefore, GPS loggers were installed in 50 taxis. 

The loggers tracked the taxis’ position every second over a 

period of six months. Furthermore, another data set containing 

the status and position of 3000 taxis over a period of one month 

was analyzed. These data sets consist of more than 340 million 

data points in total. In order to increase the efficiency of 

extracting statistics from the data sets, SQL databases were 

developed. The second part of this project was to develop an 

agent-based simulation model in order to simulate the driving 

patterns of conventional as well as electric taxis. The statistics 

derived from the data sets served as background of the 

simulation model. The simulation model is capable to calculate 

the taxis’ mileage and revenues with respect to the number and 

type of electric taxis, the number and placement of charging 

stations, and the charging power. The final step was to develop 

an optimization model which maximized the economic benefit of 

electric taxis and the charging infrastructure by finding the ideal 

number, locations, and charging power of charging stations. 

The optimization model uses the results of the simulation model. 

The agent-based driving profile simulation model is built on a 

supply-based approach. That means that the model uses the 

recorded driving profiles of conventional taxis as input and 

reproduces them unless the agents need to recharge the battery. 

The infrastructure optimization is formulated as a multiple server 

allocation problem[41] and decides how many charging stations 

shall be placed at each candidate charging location in order to 

minimize the taxis' detour and waiting time costs as well as the 

charging infrastructure costs. The problem is formulated as a 

mixed-integer linear program which minimizes detour and 

charging infrastructure costs. Waiting times are considered by a 

linear constraint which requires a sufficient number of charging 

stations to ensure zero waiting time. 

We analyzed the spatiotemporal charging load of 2949 EVA 

taxis with a charging power of 160 kW with respect to time and 

region where charging events occurred. 
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Figure 4. Load curve of 2949 EVA taxis over one day for different regions of 

Singapore and the total load (gray). 

Figure 5. Selected regions of Singapore. 

The load curve is shown in Fig. 4. The selected regions are 

depicted in Fig. 5. The results show that the simulated total 

charging load ranged from 2.7 MW at 4:45 a.m. to 13.1 MW at 

10:30 a.m. The main reason for the peak at 10:30 a.m. is that 

many taxi drivers are having a break at that time. A similar 

pattern occurred after the evening peak hour at 8:30 p.m., when 

the charging load reached another peak of 9.6 MW. The number 

of vehicles considered in this analysis is about 200 times lower 

than the number of passenger cars, but the load is just about 25 

times lower. Hence, charging of electric taxis has a much higher 

impact on the power system per vehicle than that of private EVs. 

The disaggregation of the charging load into regions shows that 

by far the highest charging load throughout the day occurred in 

the central region which also includes the Central Business 

District (CBD). This is plausible as the spatial density of taxis is 

the highest in this region. The highest load with 7.9 MW 

appeared at 10:30 a.m., which contributed to 60 % of the total 

load. Interestingly, the evening peak at 8:30 p.m. is much 

smoother and contributed to only 45 % of the total load. In the 

morning, many customers take a taxi to go from an outer region 

to the central region which results in a disproportionally high 

density of taxis in that region after the morning peak hours. In 

contrast, in the evening many customers go back to the outer 

regions, which lowers the taxi density in the central region and 

therewith the charging demand at that time. The optimization 

yielded that in total, 278 charging stations in 62 locations would 

be necessary in this scenario using the EVA taxi. 

The implemented charging behavior model which is designed to 

recharge as much energy as possible during breaks had a big 

impact on the simulated load curves. More intelligent strategies 

which take the temporal and spatial utilization of charging station 

into account could cause significantly different load curves.  

These strategies could be favorable from the drivers' as well as 

a charging infrastructure provider's point of view. Drivers could 

adjust their charging pattern in order to minimize waiting times, 

which would result in a smoother load curve with lower peaks. In 

this case, a smaller number of charging stations would be 

required to keep waiting times at an acceptable level. 

3.2.3. Public buses 

Similar to taxis, public buses have a high daily mileage. Their 

curb weight ranges from 10 to 20 metric tons. Including the high 

demand for air conditioning, their demand per kilometer is 

considerably higher than that of private cars and taxis. In 

Singapore, commuters require a card to enter buses or the MRT 

system. When entering a bus or MRT station platform, they have 

to tap in with the card. Upon leaving, they have to tap out. The 

fare is calculated from the distance and means of transport. All 

tap-in and tap-out events are centrally registered. This 

generates a large set of data, called CEPAS (Contactless e-

Purse Application) data set. The LTA provided us with a set of 

anonymized CEPAS data for three months of the year 2013. For 

our research, the trips of each individual bus including driving 

and dwelling time and the number of passengers in high 

spatiotemporal resolution were important. In a preprocessing 

step, the CEPAS data had been aggregated at the level of each 

individual bus stop-to-bus stop journey. This means that instead 

of one record per tap-in or tap-out event, the derived data set 

contains one record per bus stop for each individual bus, with 

the sum of boarding and alighting passengers at that stop. The 

arrival and departure times at each bus stop as well as the 

dwelling time had been derived based on the time between the 

first and last tap-in and / or tap-out at each stop. This 

intermediate data set contained 1.2 million records per day. With 

this data set, we were able to perform a countrywide analysis of 

the bus energy demand in Singapore in a hypothetical scenario 

where all buses were electrically powered. In the following, we 

will present the methodology used to estimate this energy 

demand and its results. A key parameter for the estimation of 

the energy consumption of vehicles is the driving profile. For 

private cars, we could refer to a standard driving cycle. For taxis, 

we had GPS data in high temporal resolution which enabled us 

to derive a very accurate model. For buses, however, the 

available data set didn’t contain data about the driving profile of 

the buses. The only available data to estimate the driving 

behavior were the arrival and departure times at each stop as 

well as the distance driven between each stop. In order to derive 

the energy consumption for buses, we designed a simplified 

longitudinal dynamics model which was parametrized with the 

available data in the data set.  
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In this simplified model, the speed profile of buses consists of a 

constant acceleration phase (a+), a constant coasting speed 

phase (v1) and a constant deceleration phase (a-). Between two 

stops, a bus may go through these phases more than once (e.g., 

in order to stop at traffic lights). The energy demand is then 

calculated by adding the energy consumption of each phase.  

The energy model for EVs is based on a longitudinal dynamics 

model which consists of four force components: 

 

 𝐹𝑡𝑜𝑡𝑎𝑙(𝑡) = 𝐹𝑎𝑖𝑟(𝑡) + 𝐹𝑟𝑜𝑙𝑙(𝑡) + 𝐹𝑐𝑙𝑖𝑚𝑏(𝑡)
+ 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎(𝑡) 

 (2) 

Fair(t) is the aerodynamic force, Froll(t) is the rolling resistance 

force, Fclimb(t) is the climbing resistance and Finertia(t) is the inertia 

force of all components in the drive train. A constant slope 

based on the elevation difference between each stops is used to 

calculate Fclimb(t). The energy consumption was originally given 

in integral form based on speed and acceleration profiles over 

time. In order to obtain terms for the energy consumption which 

don’t rely on recorded time profiles but on the available bus 

stop-to-bus stop information (distance and average speed), the 

general energy consumption formula was integrated analytically, 

taking into account assumptions made for each phase (constant 

acceleration and deceleration / constant speed phase). The 

resulting formulas only depend on the distance between the 

stops, the nominal acceleration and deceleration rates and the 

nominal coasting speed. The distance between the stops came 

directly from the bus data set. The acceleration and deceleration 

rates were chosen as constant parameters and the coasting 

speed was either set as a parameter or estimated based on the 

departure and arrival time and distance between stops. The 

equations for determining the energy demand for acceleration, 

constant speed and deceleration phase are given as follows: 

 

 
𝐸𝑎(𝑡)=𝑎+

=
1

𝜂
 ⋅ 𝑑0  (𝑀𝑔𝑓 + 𝑀𝑔 𝑠𝑖𝑛 𝛼 + 𝑀′𝑎+

+  
𝜌𝐶𝑑𝐴

2
⋅ 𝑎+𝑑0) 

(3) 

 
𝐸𝑎(𝑡)=0   =

1

𝜂
⋅ 𝑑1  (𝑀𝑔𝑓 + 𝑀𝑔 𝑠𝑖𝑛 𝛼

+  
𝜌𝐶𝑑𝐴

2
⋅ 𝑣1

2)  

(4) 

 
𝐸𝑎(𝑡)=𝑎−

=  𝑟𝑟𝑒𝑔𝜂 ⋅ 𝑑2  (𝑀𝑔𝑓 + 𝑀𝑔 𝑠𝑖𝑛 𝛼

+ 𝑀′𝑎_ − 
𝜌𝐶𝑑𝐴

2
⋅ 𝑎−𝑑2) 

(5) 

In equations (3) – (5), d0,1,2 represent the distance during 

acceleration, driving at constant speed and deceleration; v1 is 

the constant speed during the coasting phase. The other 

parameters are defined as follows: M is the vehicle mass, f is the 

rolling resistance, α is the slope angle, M’ is the inertial mass, a+ 

and a- are acceleration and deceleration, ρ is the density of air at 

25°C, Cd is the air resistance coefficient, A is the cross section 

area, η is the overall efficiency of motor, inverter and gear box, 

rreg is the regeneration factor that considers energy gain while 

braking, and g is the gravitational constant. We also added the 

energy demand for air conditioning and other electric devices in 

the bus. This energy model outputs one energy consumption 

record for each bus stop-to-bus stop trip in the CEPAS data set 

which yields the energy needed by each bus for each trip 

between two stops. Since we kept the original level of detail of 

the CEPAS data, we obtained a highly detailed spatiotemporal 

estimation of the energy demand for electric buses in Singapore. 

The particularity of our energy demand model is its usability on 

large scale data sets where detailed velocity profiles are not 

available. To the best of our knowledge, this is the first time the 

energy requirements for electric public buses for the entire bus 

network of a megacity of the scale of Singapore are determined. 

The results are based on our first analysis of the data for four 

days of operation in August 2013. The key takeaways from the 

analysis are as follows. Single decker buses amount to 66 % of 

the total distance driven, followed by double decker buses with a 

share of 24 % and articulated buses which account for 10 % of 

the total mileage. The average distance of a terminal-to-terminal 

journey for buses is around 20 km. In total, 90 % of the terminal-

to-terminal journeys are shorter than 32 km. About 40 % of the 

buses drive more than 200 km per day. From (3) – (5), the 

average specific energy demand has been estimated at 1.5 

kWh/km, 1.6 kWh/km and 1.9 kWh/km for single decker, double 

decker and articulated buses respectively. 

 

Figure 6. Cumulative distribution of the total energy demand for a terminal-to-

terminal journey by bus type. 

The average total daily energy demand of all buses in this data 

set amounts to 1.3 GWh of which 794 MWh (61 %) apply to 

single decker, 376 MWh (29 %) to double decker and 130 MWh 

(10 %) to articulated buses. The distribution of the energy 

demand (Fig. 6) shows that 90 % of the individual terminal-to-

terminal bus journeys require less than 50 kWh for single decker 

and less than 62 kWh for double decker and articulated buses. 

The distribution of the total energy demand per bus indicates 

that 88 % of single decker, 69 % of double decker and 63 % of 

articulated buses require less than 400 kWh for a day of 

operation. With 300 kWh usable battery capacity, 50 % of single 

decker, 40 % of double decker and 38 % of articulated buses 

can cover their daily mileage without recharging during operation. 
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The regional distribution of the energy demand of electric public 

buses in Singapore is shown in Fig. 7. The highest demand is 

located where the density of bus stops and the number of bus 

lines are highest, which is particularly the case in the planning 

areas of Orchard, Rochor, Singapore River and Museum. 

Outside of the central region, we recognize a higher energy 

demand in the locations of major bus interchanges, for example 

in Woodlands, Hougang, Clementi and Jurong West. 

 

Figure 7. Map of the regional distribution of the energy demand of electric 

buses. 

Fig. 8 shows the load curve of the entire electric public bus fleet 

for one day of operation. Note the two peaks corresponding to 

the passenger demand peak hours in the morning at around 

8:00 a.m. and in the evening from 4:30 p.m. to 7:00 p.m. of 

95 MW and 85 MW respectively. In between, the energy demand 

reaches a plateau between 60 MW and 65 MW. At the beginning 

and the end of the daily operation, the load curve is very steep 

as most services start and end simultaneously. Note that this is 

the temporal distribution of the energy demand, i.e., while driving, 

not the charging demand. In order to successfully integrate 

electric buses at larger scales, our future research will aim at 

determining an optimal charging infrastructure and schedule 

considering operational requirements of the bus network and the 

impact of fast charging on the grid.  

Figure 8. Load curve of a fleet of fully electric public buses on a weekday. 

4. Interaction of Electric Vehicles with the Grid 

4.1. Ancillary service provision 

Advances in battery technology allow for faster charging rates 

without excessive degradation, but one of the main challenges 

for transport electrification arises from the relatively longer time 

required to extend the driving range in comparison to internal 

combustion vehicles. Although electromobility results in an 

increase of the overall energy demand, long parking times 

observed in private vehicles can be used to schedule the 

charging operation on the one hand to lower the impact on the 

grid as shown in Section 3.2.1, and on the other hand to provide 

ancillary services to the power system. If the uncertainty related 

to the arrival time, parking duration and required range to 

complete the next trips can be quantified, car park operators 

could obtain monetary incentives by providing this flexibility in 

demand response markets. 

Liberalization of electricity markets provides opportunities for 

electric loads to bid their capacities in the energy and ancillary 

market, thus, allowing load aggregators to obtain revenue by 

either direct participation in the demand response program or by 

bidding their capacities as interruptible loads. In a previous study, 

we considered aggregation of EVs by an independent car park 

aggregator.[42] This aggregator coordinates the charging status 

of all vehicles within the carpark and schedules the charging 

operations by direct control. The aggregator submits reserve 

bids by providing curtailment of flexible loads during 

contingencies. Results of this study show that the total system 

cost could be reduced when compared to the case when only 

the costs for energy procurement are considered. 

In Singapore, the demand response market started operating in 

late 2016. The program enables contestable consumers to 

obtain incentives for reduction in the electricity demand when 

prices are high or when system reliability is compromised. 

However, the revenue cannot be calculated beforehand and is 

only settled after the load is curtailed. Any curtailment during 

market periods with high prices would benefit the load 

aggregator, provided that the charging operation can be 

rescheduled to a future market period with lower price.  

Battery degradation could become one of the main concerns to 

prevent EV drivers to participate in demand response programs. 

Fig. 9 shows experimental results obtained from tests of Lithium-

ion rechargeable cells. The decrease in the energy content of 

the cells based on different combination of initial and final state 

of charge (SoC) was derived. Later, the batteries were cycled at 

different C-rates but between a fixed initial and final state of 

charge. This was used to obtain the aging factor for the 

batteries.[43] High C-rates could result in additional degradation 

during market periods with low energy prices or periods with 

high incentives for provision of ancillary services. We proposed 

a battery degradation index to compensate drivers for the 

increased battery aging resulting from the increase in the C-rate 

resulting from participation as flexible loads.[43] A 50 % reduction 

in battery aging was achieved without any increase in total 

system cost. A correct estimate of both energy and reserve 

prices are essential for maximizing the revenue obtained for 
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participation in ancillary markets. A robust formulation to protect 

aggregators from imperfect information on prices was 

presented.[43] Results show that a 4 % reduction in the energy 

procurement cost can be achieved when aggregators show a 

risk-averse attitude by expecting higher energy prices. On the 

other hand, expecting lower incentives for provision of ancillary 

services result in less flexible loads scheduled, especially when 

battery aging is considered. 

 

Figure 9. Battery aging parameters: energy fade (top), aging factor (bottom). 

Provision of ancillary services by electromobility could benefit 

both aggregators and drivers. Ancillary services are usually 

more expensive during the day. New business opportunities are 

created for load aggregators at commercial or industrial 

locations that could provide an alternative to residential charging 

due to the lower system costs. Drivers could not only benefit 

from lower charging rates but also from the higher number of 

charging locations. 

 

4.2. Balancing fluctuations of photovoltaic power 

 

Being located close to the equator, solar irradiation in Singapore 

is high throughout the year. However, due to local weather 

conditions (rapid changes in cloud cover and other phenomena), 

high fluctuations occur; particularly from November to February. 

Consequently, a high share of PV can lead to high fluctuations in 

electricity supply which pose a high strain on conventional power 

plants, especially if all available PV power must be integrated. 

Gas power plants are flexible. However, fluctuations within 

minutes lead to high ramps or temporary shut-downs of 

individual power plants, which causes higher cost of 

operation.[44] Even without fluctuations the morning ramp-up of 

PV generation and the evening ramp-down cause additional 

ramps and shut-downs and start-ups of conventional power 

plants.[45,46] A solution could be energy storage, which however 

may lead to higher cost of operation.[47] On the other hand, 

flexible loads such as EVs could offer a solution which even 

leads to a reduction of cost of operation. 

In this study[48], we focused on private electric passenger cars 

again. We used the same model as in Section 3.2.1 with a few 

modifications such as the incorporation of ramping costs and we 

allowed solely the power system operator decide when to 

charge the cars as long as their state of charge was above 60 % 

at the end of each parking period, which allowed for high 

flexibility during the optimization. The aggregated minimum and 

maximum charging energy of EVs, as well as data on solar 

irradiance in Singapore in each time step were input as time 

series. We set the length of the time steps to 15 minutes. 

Ramping costs Cramp for each power plant in each time step of 

the simulation were defined as follows:  

 

 𝐶𝑟𝑎𝑚𝑝 =  𝑅 𝑙𝑜𝑐𝑟,𝑙𝑜 + 𝑅 ℎ𝑖(𝑐𝑟,ℎ𝑖  −  𝑐𝑟,𝑙𝑜)  (6) 

In (6), Rlo and Rhigh are the absolute difference in power output 

between two adjacent time steps, where Rlo applies to the 

portion of the difference that is less or equal half the maximum 

technically possible change in power of the power plant, and 

Rhigh applies to the higher portion. This way, high ramps can be 

penalized to a higher extent, which is because higher ramps 

cause higher strain on power plants.[44] Accordingly, different 

specific ramping cost per megawatt cr,lo and cr,hi are used. Cramp 

was added to the objective function of the optimization (Eq. (1)). 

We set up various scenarios varying the installed PV power from 

0 to 7.5 GW and the number of electric passenger cars from 0 to 

500 000. The optimization used the flexible demand by EVs to 

balance short-term fluctuations, which lead to smoother 

operation of the gas power plants with fewer start-ups.  

Figure 10. Fossil and PV generation on a day with high fluctuation of PV 

power output and no EVs. 

Figs. 10 and 11 show the generation curve of an extreme day in 

February in a future scenario in 2050 with a peak demand of 

approx. 9 GW and 5 GW of PV installed. The solar irradiance 

and consequently the power generation from PV fluctuated 

heavily, which generated high ramps in fossil generation and 
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forced temporary shut-downs of fossil power plants during the 

day. Fig. 10 shows the case when no EVs were included. 

Figure 11. Fossil and PV generation on a day with high fluctuation of PV 

power output and 500 000 EVs. 

In the case of Fig. 11, 500 000 private EVs were included. Most 

of the additional demand caused by the EVs was distributed 

during the peak hours in order to smooth the supply curve of the 

fossil power plants. The rest was used to fill the demand gap 

between 3 a.m. and 7 a.m. Mainly due to lower fuel costs, 

specific operating costs decreased with a higher share of PV, 

compensating increased costs for additional start-ups and 

ramping. Results also show that EVs can lead to increased 

specific operating costs when no PV or only 1 GW of PV was 

installed. With 500 000 electric cars, specific operating costs 

decreased also for low values of installed PV as the demand 

could be held rather constant during the night, which reduced 

ramping and start-up costs. Table 2 shows the specific operating 

costs for various values of installed PV and numbers of EVs. 

Table 2. Operating for costs for different amounts of installed PV and different 

number of electric passenger cars. 

Installed PV 
[GW] 

Operating costs [USD/MWh] for 
different numbers of EVs 

0 100 000 300 000 

0 62.50 62.70 62.53 

1 61.66 61.57 61.71 

3 60.32 60.24 60.13 

5. Emission Reduction Potential 

In this section, we present the results of a study on the emission 

reduction potential of electromobility in Singapore with today’s 

power generation mix.[49] Aside from greenhouse gases, we 

considered various pollutants. First, we selected a model to 

determine vehicle exhaust emissions, then we collected data on 

today’s vehicle fleet of Singapore including emission classes 

and mileage, obtained information on grid emission factors, and 

finally compared today’s vehicle emissions to additional power 

plant emissions caused by the electricity demand of EVs. 

For our analysis, we chose the model COPERT 4[50] as all 

required input data were available and we considered country-

wide emissions only. Moreover, COPERT 4 uses the Euro 

emission standard which is used in Singapore. Detailed data on 

the vehicle population of Singapore including average mileage, 

vehicle subsector and technology are available. All vehicle 

categories are subdivided by their fuel type. Motorcycles and 

cars are further divided by cc rating while the bus population is 

separated by passenger capacity. Goods and other vehicles are 

partitioned by type of body and maximum laden weight. The age 

distribution is given for cars, buses, goods and other vehicles, 

and motorcycles with the total amount per year or in percent. All 

data is taken from LTA’s annual vehicle statistics.[51] For average 

mileage and speed of taxis and buses, we used our own data. 

Specific emissions from power generation are hardly available. 

The Energy Market Authority of Singapore regularly publishes 

values for the greenhouse gases CO2 and CH4.[4] Information on 

polluting emissions of Singapore’s power plants is not available. 

The GREET model however, provides averaged emission 

factors for pollutants grouped by the source of primary energy 

and was initially developed to analyze the fuel production in the 

USA.[52] Since the values used in GREET are specific for the 

USA, they can only be used as a guideline for emission factors 

of other countries. We therefore considered the GREET values 

as the best case and considered a worst case where emissions 

are assumed to be 50 % higher than in the GREET model. 

Considering charging losses, the final electricity demand from 

the grid results in 18.5 kWh/100 km for electric passenger 

cars.[53] For bigger passenger cars, other sources suggest 

values up to 27 kWh/100 km.[54] We therefore chose an average 

demand of 20 kWh/100 km for the simulation. Due to their larger 

weight, light duty vehicles have a higher demand which we set 

to 30 kWh/100km based on existing models. For motor cycles, 

we chose an average of 8 kWh/100 km accordingly. Due to their 

much higher weight, battery electric buses require significantly 

more energy than passenger cars. We used the values derived 

from calculations in Section 3.2.3. 

Table 3. Transport emission reduction potential of EVs for the best and worst 

case. 

Compound Emission reduction 
potential (best case) 

Emission reduction 
potential (worst case) 

CO2eq 75 % 62 % 

CO 95 % 65% 

NOx 90 % 10% 

VOC 90 % 55% 
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Table 3 shows the exhaust emission reduction potential for CO2 

and various pollutants in the transportation sector. For all 

compounds, the emission reduction potential is high – even with 

today’s power generation mix. For NOx, the deviation between 

best and worst case is highest, which is because NOx emissions 

of gas power plants increase in part load operation. Gas power 

plants in Singapore should operate at a minimum load of 

55 %.[55,56] This underlines the need for proper integration of 

electromobility into the power system. 

6. Discussion and Conclusion 

In this review, we presented a summary of the research at 

TUMCREATE in the field of electrification of road transport and 

its integration into the power system. We showed the 

prospective additional power and energy demand of electric 

passenger cars, taxis and public buses. The installed capacity in 

Singapore is currently high enough to cover the additional 

demand. However, charging of EVs can on the one hand 

increase the peak load and put more strain on power plant 

operation by causing additional ramps and shut-downs and 

start-ups. Intelligent charging strategies can lower the impact of 

electromobility on the power system and the grid. Our results 

also show that EVs could even help integrate solar PV into 

Singapore’s power system. Singapore intends to install solar PV, 

but has so far been reluctant to install higher shares. As we 

showed, EVs and act as providers of energy storage that can 

react quickly to changes in power supply and demand. 

Electromobility also has a high potential for ancillary service 

provision and new business models. As Singapore’s power 

generation mix is already rather clean, switching to 

electromobility will not just reduce local emissions of pollutants, 

heat and noise, but also country-wide emissions including 

greenhouse gas emissions. By installing both PV and 

electromobility, emissions could even be further reduced without 

increasing operating costs of the power system. Singapore is 

ready for electromobility and it is currently increasing the number 

of EVs within the EV test-bed 2 and another electric bus trial to 

start in 2018. At the same time, more and more test-beds for 

autonomous vehicles are being set up in Singapore. Driverless 

vehicles with an optimal driving cycle are more efficient than 

people-driven vehicles. Moreover, autonomous vehicles that are 

able to share charging stations by swapping places in a car park 

or vehicle depot whenever it makes sense, can reduce the 

number of charging stations and costs as well. Hence, 

autonomous and electric mobility could benefit from each other. 

In future research, we will analyze intelligent charging strategies 

for electric taxis and public buses. We will also look into further 

services such as frequency response from EVs, and on the 

impact of electromobility on distribution level. 
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