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Abstract—Penetration levels of electric vehicles (EVs) and
distributed energy resources (DER) increase as the power dis-
tribution grid continues to change. This leads to a significant
variation in the distribution system load profile, reduce the
voltage quality and create congestion in some nodes of the
network. Distribution network reconfiguration (DNR) presents an
alternative to reduce the impact of EVs and DER while avoiding
requirements of network reinforcement. This work proposes
a day-ahead optimal network reconfiguration to mitigate the
negative impact caused by the presence of EVs in the distribution
system. The distribution network is optimized using genetic
algorithm (GA). A sequence of hourly network configuration
is proposed to minimize the operating cost resulting from
both power losses and switching operation. The cost of power
losses is calculated based on the National Electricity Market of
Singapore (NEMS)’s electricity hourly price. Simulations results
are provided to validate the proposed method.

Index Terms—Distribution System Operation, Electric Vehi-
cles, Network Reconfiguration

I. INTRODUCTION

Transition to smarter power grids involves an increment

of DERs and EVs connected at the distribution level. Main

issues resulting from the high penetration of these resources

include changes in daily load profiles, congestion, voltage

and line overloading problems. Installation of distributed solar

photovoltaic (PV) generation may improve the overall system

voltage profile and reduce power losses [1]. At the same

time, increased PV penetration could cause reverse power

flow, resulting in overvoltages and power quality deterioration.

Adding EVs at different buses of the distribution grid will

require additional capacity to charge the batteries. Uncontrol-

led charging may lead to increase in peak load, higher power

losses, voltage issues and decrease in system load factor [2],

[3]. As penetration of EVs grows network reinforcement may

be necessary.

The distribution system operators (DSOs) are responsible

for operating the system in an optimal way and plan the

required network upgrades. One of the smart grid’s targets is

to improve the energy efficiency by an optimal utilization of

the existing network. According to [4], there are two methods

that DSOs can use for improving the system operation. Market

methods use price signals or contracts to influence the behavior

of flexible loads. On the other hand, direct control methods

include changing the network topology using DNR and de-

mand response (DR) programs which involve fixed contracts

that allow operators to control the active and reactive power

set-points based on the user constraints.

Different optimization techniques have been used to solve

DNR. In [5], GA was applied to find the configuration that

minimizes the total system losses. In [6], particle swarm

optimization was used to consider load variations and distri-

buted generation for power loss reduction and voltage profile

improvement. An optimal reconfiguration based dynamic tariff

method for congestion management and loss reduction was

presented in [7]. The objective of DNR is to find a optimal

radial structure by changing the state of sectionalizing and

tie switches. In [8], authors derived a formula to estimate

the loss reduction resulting from network reconfiguration.

The algorithm proposed in [9] considers meshed networks

instead of the radial topology. Although there are several

authors proposing methods to solve the DNR using linear or

convex approximations of the power flow equations [7], [10],

[11], these methods are usually computational intensive and

solving them becomes harder as the network size increases.

The authors in [12] propose a DC approximation of the power

flow equations, this could result in violation of the voltage

limits for long distribution feeders. The authors in [10], [11]

use convex relaxation of the AC optimal power flow problem,

they require special conditions for the power flow relaxation

to be exact.

Some literature exists regarding distribution systems in the

presence of EVs. Authors focus either in reducing the total

losses [2] or in reduction of feeder overload [13]. In [14],

network reconfiguration was proposed to mitigate possible

problems of feeder overload, low voltage and power loss

increase due to EV charging. But it should be noted that the

aforementioned authors did not take into account the system

operating cost while performing the DNR. Deregulation of

markets results in variable daily prices. In this variable price

structure, minimization of total system losses may result in

sub-optimal total daily operative costs.

In this work, GA is used to obtain an optimal day-ahead

sequence of network configurations that minimizes the total

daily operating cost. The optimization takes into consideration
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Fig. 1. Distribution network notation

the cost for the DSO resulting from the system losses and

the switching costs. This is done while maintaining stability

and security of the distribution grid. The proposed method

ensures that cost is minimized while reducing the number of

switching operation. This results in lower maintenance and

extended lifetime for the switchgear.

The paper is organized as follows. Section II first explains

concepts related to DNR for loss reduction, GA and power

flow for distribution systems and then presents the proposed

methodology. Section III explains the simulation setup and the

results are presented in Section IV. Finally, Section V shows

the conclusion and an outlook for future research areas.

II. DISTRIBUTION NETWORK RECONFIGURATION

Distribution networks are the most extensive part of the

electrical power system. They are normally built as mesh

networks, but many are operated radially [15]. This means that

there is only one path for power to flow from the distribution

substation to the consumer. Power losses are considerably high

because of the low voltage level. Shifting from centralized

to decentralized market structures allows DSOs to serve as

load aggregators, their responsibility includes managing and

coordinate the operation of some part of the distribution

network. Line losses result in higher operative costs and it

is therefore of their interest to minimize the cost resulting

from losses in the distribution grid. DNR modifies the radial

structure of the distribution feeders by opening and closing tie

and sectionalizing switches, thus transferring loads from one

feeder to another [8]. Topological constraints need to be taken

into account to ensure the structural feasibility and radiality of

the system. Feasibility indicates that all nodes in the system

must be connected to some branches and radiality ensures

there are no loops in the network.

A. Distribution System Model

This work assumes a balanced distribution network con-

nected to the medium voltage through a distribution transfor-

mer. The system is modeled using a single phase equivalent.

An overview of the notation used is shown in Fig. 1.

Power balance equations are introduced to account for

provision of both active and reactive power
�
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where �b,h depicts the line current and P
g
i,h and Q

g
i,h are

the active and reactive power generated at bus i. Similarly,

P d
i,h and Qd

i,h depict the demand at bus i. Sets ΩN and ΩB

represent the set of all buses and lines in the distribution grid

respectively.

The total cost for losses during period h is then defined by

χL
b,h = Rb · �

2
b,h ·Δt · λh (3)

where Δt is the period duration and λh depicts the energy

price during period h. Similarly, the cost for operating the

switches is defined by

χS
h =

�

b∈Ωb

[| Φb,h−1 − Φb,h | ·μ] (4)

where Φb,h represents the status of the switch, Φb,h = 1 if the

switch is closed and Φb,h = 0 if open. The term μ represents

the switching cost and is defined using the total cost for the

switchgear and the estimated number of switching operations

before the device reaches the end of life.

The following constraints are added to ensure radial opera-

tion of the distribution feeders
�

b∈Ωb

Φb,h =
�

�ΩN
�

�− ns ∀h ∈ ΩH (5)

where ns is the number of substations in the distribution

network.

B. EV carpark model

The carpark model is derived from [16]. The arrival-

departure data for each carpark was derived using a pro-

babilistic model based on driver profiles for Singapore. Let

Ωev
n ∈ R

M denote the set of all EVs connected at bus n

of the distribution grid. Each carpark is modeled as a virtual

battery connected at the distribution grid. The state space

representation for the aggregated carpark model is given by

xn,h+1 = An · xn,h +Bn · un,h (6)

where xn,h ∈ R
M depicts the battery state of charge (SOC)

of all cars connected at bus n during time period h. Variable

un,h ∈ R
M represents the power drawn from bus n at the dis-

tribution grid. Coefficients An ∈ R
M×M and Bn ∈ R

M×M

depict the relationship between the inputs and the state of the

vehicles at the next market period.

The following constraints are added to prevent discharge of

the vehicle battery to the grid and ensure the SOC is within

the safe operating limits for all vehicles in the carpark:

x
min
n,h ≤ xn,h ≤ x

max
n,h (7)

0 ≤ un,h ≤ u
max
n,h (8)

where variables x
min
n,h and x

max
n,h depict the minimum and

maximum battery SOC for the EVs connected at bus n at

time step h. Similarly, the term u
max
n,h restricts the maximum

charging rate based on the EV limits.
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The total cost for the aggregated virtual battery connected

at bus n for each period h is given by:

χV
n,h = ||un,h|| ·Δt · λh (9)

C. Power Flow in Distribution Systems

Traditional methods to solve the power flow problem like

Gauss-Seidel or Newton-Raphson are well established for

transmission networks but may not be suited for distributions

systems. This is due to the high number of branches and nodes,

larger R/X ratio and radial operating structure. Alternative

power flow methods are required for distribution networks.

The approach proposed in [17] is implemented in this paper.

A direct solution is obtained by using the topological charac-

teristics of the distribution network.

D. Feeder reconfiguration algorithm

The proposed method determines the optimal hourly net-

work configuration considering the availability of the EV, the

energy requirements and the optimal switching sequence. The

total operating cost for the system is obtained by minimization

of the following cost function

min
�

h∈ΩH

�

n∈ΩN

�

b∈ΩB

�

χV
n,h + χL

b,h + χS
b,h

�

(10)

subject to

Equations (1), (2) and (5) to (8)

| �b,h |≤ �+b ∀ b ∈ ΩB , h ∈ ΩH (11)

V − ≤ Vn,h ≤ V + ∀ n ∈ ΩN , h ∈ ΩH (12)

The term Vn,h depicts the voltage at bus n during period h

and �b,h represents the current flowing through branch b during

period h. Equations (11) and (12) represent the current and

voltage constraints, respectively. The term �+b is the maximum

current limit for branch b. Similarly, V + and V − are the

system maximum and minimum voltage allowed by the DSO.

Two indexes are developed in this paper to measure the

effectiveness of the proposed method. The voltage deviation

index (ϑ) is based on the power load in each bus. This index

measures the aggregated voltage deviation from the nominal

value for all buses based on the bus load and the total system

load.

ϑh =
�

n∈ΩN

�

(Vn,h − V
�)

2
· Pn,h

�

i∈ΩN Pi,h

(13)

The branch capacity index (ζ) measures the deviation from

the maximum allowable current based on the ration between

losses at each distribution system branch and the total losses

for the system. Although (11) ensures the current at all

branches are within the safe limits, a lower value represents

lower congestion in the system.

ζh =
�

b∈B

�

�+b − �b,h
�

·Rb · �
2
b,h

�

y∈ΩB Ry · �2y,h
(14)
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Fig. 2. Proposed algorithm

An overview of the proposed solution method is shown

in Fig. 2. The main purpose of the algorithm is to define a

operational schedule for the distribution network that considers

both the base load and cost optimal scheduling for the different

EV aggregators. This algorithm also considers the operating

cost for the DSO and defines the optimal distribution network

topology based on minimization of system losses and the

switchgear lifetime.

In this work, the optimal switching sequence for both

sectionalizing and tie switches are found by making use of GA.

The GA algorithm was implemented using a modified version

of the global optimization toolbox from MATLAB
c�. This

optimization technique is used to solve nonlinear problems

by implementing evolutionary biology concepts to search for

the global minimum. Characteristics like working with coding

of parameters and using probabilistic transition rules, make

GA a more robust option than other nonlinear optimization

techniques [18]. Another advantage of GA is that since the

objective function is computed independently, power flow

equations can be modeled using the full AC model. This

allows GA to be able to solve not only single phase equivalent

circuits, but also solve the problem for three-phase unbalanced

distribution networks while ensuring the voltage and line
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Fig. 5. Reactive power demand by customer type

constraints are not violated.

III. SYSTEM DESCRIPTION

The algorithm is tested using a modified version of the

IEEE 14-bus distribution system Fig. 3. It consists of thirteen

sectionalizing switches and three tie switches. There is a main

feeder and 13 load buses including residential, commercial and

industrial customers. The system initial load profile is depicted

in Fig. 4, where the daily demand for each customer type is

illustrated in hourly periods. The peak demand occurs at hour

17, reaching 29.12 MW of consumption. This papers assumes

EVs are integrated to the system through five aggregators

connected to buses 3, 4, 7, 8 and 12.

IV. SIMULATION RESULTS

As the demand in the system increases, a considerable

increase in the daily total cost of power loss is produced. The

total power loss of the system grows from 6.46 MW to 10.11

MW after the integration of the car parks.

The implementation of DNR is an effective method to

reduce power losses. Consideration of the switching cost and

the cost resulting from these losses may result in a different

switching sequence in order to minimize the operating cost
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Fig. 6. NEMS’s energy price forecast

of the system. The switching cost is assumed to be 0.35

Singapore dollars ($) per commutation. This number is derived

based on the switchgear cost and the maximum number of

switching operations possible during the entire mechanical life

of the switchgear. Energy price for the NEMS is used for the

simulation. The energy price forecast for a 24-hour interval

is shown in Fig. 6. The base case assumes that no DNR is

allowed and considering both the 24-hour base load shown

in Fig. 4 and the increase in load required by the EV load

aggregators in Fig. 7. Three different scenarios are evaluated

in order to analyze the DSO’s operating cost.

A. Case 1: Day ahead fixed configuration

In this case, the objective is to find a fixed configuration

that minimizes the total system losses for the entire 24 hours.

This configuration is maintained throughout the day. The main

advantage of this method is that the power loss reduction

is achieved without any intra hour switching commutation.

This method results in extended switchgear lifetime due to

the smaller number of switching operations.

B. Case 2: Hourly distribution network reconfiguration

DNR is performed hourly and 24 optimal switching se-

quences are obtained in order to find the network topology

resulting in minimum power losses. Power losses are reduced

in comparison to the results in Case 1. However, the drawback

of this method is that due to the limited number of switching

operations the switchgear can sustain through its lifetime.

Excessive switching may result in higher maintenance costs

and will require the switchgear to be replaced more frequently.

C. Case 3: Proposed method

For the proposed method, the cost of losses and swit-

ching operations are considered. Minimization of the objective

function proposed in (10) is carried out. The objective is to find

the optimal 24-hour switching sequences that minimize the

total operating cost. Consideration of switching costs allows

changes in the topology of the system to be made only when

the savings resulting from this new configuration lead to lower

operational costs for the DSO, i.e. a topology with higher

losses may be preferred if less switching is required.

Results fo hourly and total system losses under different

scenarios are shown in Table I. Reductions in power losses are

achieved by all cases when compared to those of the base case.

A 10.45% loss reduction from 10.11 MW to 9.05 MW when
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Table I
SYSTEM LOSSES UNDER DIFFERENT SCENARIOS

Hour Base Case Case 1 Case 2 Case 3

1 0.0740 0.0685 0.0685 0.0685

2 0.1032 0.0974 0.0974 0.0974

3 0.0720 0.0666 0.0666 0.0666

4 0.0618 0.0587 0.0587 0.0587

5 0.0736 0.0669 0.0669 0.0669

6 0.0919 0.0878 0.0878 0.0878

7 0.1160 0.1110 0.1110 0.1110

8 0.1526 0.1401 0.1401 0.1401

9 0.5208 0.5191 0.5096 0.5191

10 1.0959 0.9620 0.9620 0.9620

11 0.2973 0.2738 0.2738 0.2738

12 0.7899 0.6396 0.6396 0.6396

13 0.6238 0.5736 0.5670 0.5684

14 0.4166 0.3632 0.3619 0.3619

15 0.4031 0.3561 0.3551 0.3551

16 0.4757 0.4137 0.4137 0.4137

17 0.7371 0.6437 0.6433 0.6437

18 0.6271 0.6730 0.6271 0.6345

19 0.9256 0.8805 0.8805 0.8805

20 0.8839 0.7409 0.7409 0.7409

21 0.4881 0.4038 0.4038 0.4038

22 0.5494 0.4804 0.4804 0.4804

23 0.3664 0.2919 0.2919 0.2919

24 0.1662 0.1426 0.1426 0.1426

Total Power

Loss (MW)
10.1120 9.0550 8.9902 9.0090

Table II
DAILY OPERATING COST FOR DSO

Case

Number of

Switching

Operations

Switching

Cost ($)

Power

Loss

Cost ($)

Total

Cost ($)

Base 0 0 2277.6 2277.6

1 0 0 2018.9 2018.9

2 24 8.4 2006.7 2015.1

3 8 2.8 2009.7 2012.5

comparing the base case and the fixed configuration (Case 1 in

Table I). Hourly reconfiguration (Case 2 in Table I) results in a

reduction of 11.09% (from 10.1121 MW to 8.9902 MW). As

expected, the hourly reconfiguration produces the maximum

total loss reduction. Lastly, 10.90% reduction in losses is

achieved using the proposed method (Case 3 in Table I, from

10.1121 MW to 9.0090 MW).

Table II details the number of switching commutations

and the total daily operating cost, i.e. switching cost, power

loss cost and operating cost, for each scenario. It should be

Fig. 7. Car parks load schedule
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Fig. 8. Total load demand considering EVs
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noted that keeping a fixed configuration is not so effective for

cost reduction comparing to the others cases. In Case 2, the
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maximum power loss cost reduction is reached, however, a

higher number of switching operations makes this approach

less attractive. The minimum total operating cost is obtained

when both loss and switching cost are minimized. A noticeable

reduction in the number of switching operations is observed.

Each carpark aggregator schedules the individual EV char-

ging operations independently. The aim of each aggregator is

to minimize their operating costs. This schedule is passed to

the DSO and is added to the system loads. The car parks’

hourly schedule results for the proposed method are shown

in Fig. 7. An overview of the total system load is shown in

Fig. 8. Addition of EVs results in an increase in total system

demand, at the same time, the system peak is shifted to hour

19, with a new value of 41.48 MW.

Figure 9 shows a comparison of the voltage deviation

index for each case. A lower value of this index indicates

less voltage deviation meaning better overall voltage profile.

Results show that voltage profile is generally improved when

DNR is considered. Similarly, Fig. 10 show improvements

in the branch capacity index, which is used as a measure

of congestion for the system. Case 2 and 3 show similar

improvements in the voltage and current indexes, on the other

hand, the fixed configuration proposed in case 1 results in

deterioration of the voltage profile, specially during hours 17

to 19. From Fig. 10 it can also be seen that during hours 13

to 16 the system is more congested for Case 1 than it is for

Cases 2 and 3.

V. CONCLUSION

This paper presents an optimal day-ahead hourly configura-

tion in order to minimize the total system operating cost. Time-

varying load and EVs are integrated in the distribution net-

work. An objective function is proposed and a GA technique

is used for solving the optimization problem. The proposed

method analyzes both switching and power loss costs in order

to find the optimal configuration for each hour and reduce the

total operating cost.

Results show that improvements in both the voltage and

current profiles could be obtained when compared to those of

the base case. Reductions of about 12% in the total system

operating costs are obtained. At the same time, the lifetime

of the switchgear is increased by reducing the number of

switching operations.

Since uncertainties on the load and EV parameters could

have a big effect on the performance of the proposed algo-

rithm, uncertainties could be modeled using robust formulation

or introducing concepts like interval optimization. Another

interesting area for future research is the evaluation of the

proposed algorithm using an unbalanced distribution network

model. Effects of integration of DER, i.e PV and wind turbi-

nes, in the distribution system and effect of these resources in

the network losses could also be evaluated.
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