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Abstract—Photovoltaics (PV) are considered as one of the most
promising renewable energy source for Singapore. This paper
proposes an optimization strategy for a distribution grid that
includes PV. The objective is to provide optimal grid operation
for seamless integration of distributed generation (DG). A novel
approach for grid reconfiguration considering a probabilistic
statistical model for the solar irradiance is introduced. A stochas-
tic mixed-integer second order conic programming (SMISOCP)
algorithm is devised to provide an optimal radial grid topology.
The objective is to reduce power losses and operational costs
of the grid. Case studies of grid model with distributed PV
generators are conveyed to affirm the capability to deliver the
objectives.

Index Terms—Optimization, Smart Grids, Solar Power Gen-
eration, Power System Management, Quadratic Programming.

NOMENCLATURE

Sets
Ωl Set of lines
Ωn Set of nodes
Ωs Set of substations
H Set of hours
S Set of scenarios
Constants
Δh Time frame [hour]
γ Switching cost [S$/switching]
ψh Cost of electricity [S$/kWh]
Ri,j Resistance of lines [Ω]
Xi,j Reactance of lines [Ω]
Zi,j Impedance of lines [Ω]
V Maximum voltage magnitude [kV ]
V Minimum voltage magnitude [kV ]
Iij Maximum current magnitude [A]
P d
i,h Active power demand [kW ]

Qd
i,h Reactive power demand [kV ar]

P g
i,h,s Active power from PV generation [kW ]

ζh,s Probability of scenario s at hour h
N Number of scenarios
Continuous variables
Ii,j,h,s Current magnitude through lines [A]
Vi,h,s Voltage magnitude [kV ]
ν Total cost excluding constant loads [S$]
P grid
i,h,s Active power supplied by the grid [kW ]

Pi,j,h,s Active power flow through lines [kW ]

Qgrid
i,h,s Reactive power supplied by the grid [kV ar]

Qi,j,h,s Reactive power flow through lines [kV ar]
ωi,j,h,s Auxiliary variable used to model the state of the

lines
Binary variables
ρ�i,j,h Switching coefficient
ρi,j,h Switch status of line ij

I. INTRODUCTION

The recent rapid advancement in telecommunication tech-
nologies, automation and information technologies give a
broad perspective on smart grid development and implemen-
tation. The accelerated improvements in renewable energy
generation technologies make intermittent power sources to
be emphasized as the future of green power generation.
Renewable sources of energy are an essential part of the future
smart grid.

In the last decade, distributed generation (DG) is progres-
sively implemented with significant increase in wind energy
generation and solar energy generation capacities. With more
than 227 GW solar energy generation capacities installed
globally, their share in the global energy generation profile
is more than ten times higher compared to 2009 [1]. By 2050,
solar energy generation is estimated to take a share of 16 %
of the global electricity generation [2]. In Singapore, 20 %
penetration of solar energy generation in the electricity supply
system is expected [3]. Having DG at the focus gives way to
a new grid infrastructure, which brings certain challenges to
the existing power system.

When considering PV for the optimization, obtaining a
highly accurate solar irradiance point forecast is considered
to be difficult and complex. Plenty of parameters need to be
considered to perform a forecast [4]. The complexity of the
methods depends on the instruments and data available to the
forecaster, such as nearby meteorology stations and satellites,
data on PV and numerical weather prediction models.

The majority of electricity generation is scheduled in the
day-ahead market, thus a day-ahead point forecast is needed.
This type of forecast is to be provided 18.5 to 42.5 hours prior
to the operating day. With today’s technology and approach,
24 to 48 hours ahead of time point forecast accuracy has a
root mean square error in the range from 57 % up to 72 %
[5]. Based on the mismatch between solar irradiance point
forecast and the real solar irradiance values, uncertainty is one
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of the main challenges in distribution grids due to high PV
penetration. This is not addressed with high accuracy when
using the irradiance point forecast for a longer time period
before the actual power generation.

Reconfiguration optimization is a method used for distri-
bution grid optimization, being a topic of research for the
past few decades. Progress has been slow and limited due
to limitations in technology and cost. Recent development in
remote supervision and control of technologically improved
switch-breakers presents the opportunity to use efficient, eco-
nomical and optimal reconfiguration methods. Many different
methods are applied for distribution grid reconfiguration [6].
Loss reduction in the distribution grid can be addressed using
heuristic rules to lessen the computational burden and reduce
the number of iterations. However, the solutions obtained in
this method are only approximate or local optimums [7].
Recently, artificial intelligence methods like particle swarm
optimization, genetic algorithm or clonal selection algorithms
are used [8], [9], [10]. Although these methods can provide
major improvements and incorporate human reasoning to deal
with the uncertainties in the distribution grid, global optimality
is not guaranteed. Most recently, convex mixed-integer pro-
gramming is used, which guarantees to have a global optimal
solution [11], [12].

In this paper, reconfiguration is accomplished through
transformation of the network topology. By operating the
interconnection switch-breakers, the electrical behavior of the
distribution grid is affected [13], [12]. A novel stochastic
reconfiguration optimization method is presented with an ob-
jective to minimize the losses and operational costs. Different
penetration levels of PV are considered. The solution must
comply to maintain a radial topology and respect the voltage
and current constraints [14]. By the use of constraints defined
in the optimization, this reconfiguration method can also
enhance the voltage profile, balance the load flow over the
feeders and reinforce the grids reliability.

In Section II, a probabilistic model of the PV power output
as an alternative to PV point forecast is presented. The network
reconfiguration principle utilized through a novel SMISOCP,
followed by a second order conic relaxation is defined in
Section III. Case study to evaluate the method is conveyed
and detailed in Section IV. In the last Section V, conclusion
is derived.

II. PROBABILISTIC MODELING OF PHOTOVOLTAIC POWER
OUTPUT

A. Addressing the Uncertainty with Probability Distribution
Functions

In this paper, the irradiance point forecast is replaced by
a probabilistic model obtained using statistical data. Solar
irradiance is represented by a finite number of scenarios with
an adequate probability. It is important to note that the quantity
of statistical data available will affect the accuracy of the
model and the final results.

The intermittent solar irradiance is modeled using probabil-
ity distribution functions (PDFs) fitted from hourly statistical
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Fig. 1. Histogram of solar irradinace for 15:00 - 16:00 during January for
period of 20 years.
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Fig. 2. PDFs fit on histogram for low and high irradiance segment for 16:00
in January.

data. It is assumed that the hourly solar irradiance follows a
bimodal distribution function as shown on Fig. 1. Linear com-
bination of two unimodal PDFs using weighing coefficients is
implemented to represent the bimodal PDF [15], [16]. The
weighing coefficients W1 and W2 are obtained as follows

Wj =
(number of samples)segmentj

(number of samples)total
j ∈ 1, 2

Different PDFs are fitted to the sectioned data, i.e., Weibull,
Beta, Log-Normal and G. Extreme V. Theorem. To decide
the best PDF fit to each section separately, Chi-squared and
Kolmogorov-Smirnov goodness-of-fit tests are conveyed [17],
[18]. A set of PDF plots fitted to a sample data for the time
segment 15:00 - 16:00 during January is shown in Fig. 2.

Utilizing the goodness-of-fit test, p-values to evaluate the
null hypothesis are obtained and compared with a significance
level of 5 %. Although different fits show calculated probabil-
ities good enough to confirm the null hypothesis for a single
case, as seen in Fig. 2, the best fit is considered for greater
accuracy. The results based on the Kolmogorov-Smirnov test
are shown in Table I. According to Table I, the most common
bimodal distribution in the peak hours follows Log Normal and
G. Exreme Value PDFs defined by
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TABLE I
KOLMOGOROV-SMIRNOV GOODNESS-OF-FIT TEST RESULTS FOR JANUARY

Hour Low irradiance section High irradiance section
09:00 Log-Normal Log-Normal
10:00 Log-Normal Weibull
11:00 G. Extreme Value G. Extreme Value
12:00 Log-Normal G. Extreme Value
13:00 G. Extreme Value G. Extreme Value
14:00 Log-Normal G. Extreme Value
15:00 Log-Normal G. Extreme Value
16:00 Log-Normal Weibull
17:00 Weibull Log-Normal
18:00 Weibull G. Extreme Value
19:00 Log-Normal Weibull
20:00 Weibull G. Extreme Value

In equation (1), xi is the irradiance and xi > 0; Wj , j ∈
1, 2, is the weighing coefficient; σli is log standard deviation;
µli is log mean; σgi is scale parameter; µgi , ξi are location
and factor parameter respectively; i represent the hour of the
day. For other cases of different unimodal distributions, the
bimodal PDF is similarly defined.

Given the definition of solar irradiance distribution, the PV’s
power output used is described by

PPV = Ee · SPV · ηPV (2)

In equation (2), PPV is the power output (W); Ee is the solar
irradiance (W/m2); SPV is the PV’s installed surface (m2);
ηPV is the PV’s efficiency.

B. Sampling

The irradiance is defined as continuous distribution function
(CDF), meaning it is an infinite set of possible values along
the specific distribution. Each of these values have a point
probability equal to zero. For the bimodal distribution to be
utile, it needs to be discretized with a finite set of scenarios.
Monte Carlo sampling is used such that the CDF is approxi-
mated by a discrete set [19]. In this way, a finite and tractable
scenario tree is constructed. The scenario tree contains N pairs
of irradiance and probability values for each time segment
when solar energy is available. Sampling is completed before
optimization is performed.

III. NETWORK RECONFIGURATION

In order to represent the steady-state operation of the Elec-
trical Distribution System (EDS), the following assumptions
used for load flow formulation [13], [12], [20] are made:

• Electric loads are modelled as constant active and reactive
power loads.

• The system is balanced and represented by its single-
phase equivalent circuit.

The EDS notation is illustrated in Fig. 3. Consider EDS with
a substation at node 0 and a meshed structure. It is assumed
that all lines are equipped with switch-breakers that can open
or close any feeder according to the configuration obtained.

A a

Fig. 3. Electrical Distribution System notation.

A. Stochastic Mixed-Integer Non-Linear Programming

The network reconfiguration optimization can be repre-
sented by a Mixed-Integer Non-Linear Programming (MINLP)
formulation [11], [12]. All scenarios are considered in the
optimization solution for each time segment. Doing this com-
pletely accounts the PV power output over the total period.
Even though there are N different scenarios, the solution must
provide a single optimal grid configuration for each time
segment. Set S of scenarios and its probabilities ζh,s, together
with the set H of time segments for the total period analyzed
are introduced. For simplified and more convenient notation,
the following squared variables are introduced:

υi,h,s = V 2
i,h,s and �i,j,h,s = I2i,j,h,s

A novel Stochastic Mixed-Integer Non-Linear Programming
(SMINLP) optimization is defined as

min
�i,j,h,s

ν =
�

i,j∈Ωl

�

h∈H

�

s∈S

(ζh,s ·Ri,j · �i,j,h,s · ψh)

+
�

i,j∈Ωl

�

h∈H

�

s∈S

�
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�
(3)

subject to
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−
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∀i ∈ Ωn, h ∈ H, s ∈ S (4)

Qgrid
i,h,s +

�
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Qi,j,h,s

−
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[Xi,j · �i,j,h,s] +Qg
i,h,s = Qd

i,h

∀i ∈ Ωn, h ∈ H, s ∈ S (5)
υi,h,s − υj,h,s = ωi,j,h,s + 2 ·Ri,jPi,j,h,s

+2 ·Xi,jQi,j,h,s + Z2
i,j�i,j,h,s

∀i, j ∈ Ωl, h ∈ H, s ∈ S (6)

|ωi,j,h,s| ≤
���V 2 − V 2

��� · (1− ρi,j,h)

∀i, j ∈ Ωl, h ∈ H, s ∈ S (7)
υi,h,s�i,j,h,s = P 2

i,j,h,s +Q2
i,j,h,s

∀i, j ∈ Ωl, h ∈ H, s ∈ S (8)
|Pi,j,h,s| ≤ V Ii,jρi,j,h ∀i, j ∈ Ωl, h ∈ H, s ∈ S (9)
|Qi,j,h,s| ≤ V Ii,jρi,j,h ∀i, j ∈ Ωl, h ∈ H, s ∈ S (10)



0 ≤ �i,j,h,s ≤
��Ii,j

��2 · ρi,j,h
∀i, j ∈ Ωl, h ∈ H, s ∈ S (11)

|V |2 ≤ υi,h,s ≤
��V

��2 ∀i ∈ Ωn, h ∈ H, s ∈ S (12)�

i,j∈Ωl

ρi,j,h = |Ωn|− |Ωs| ∀i, j ∈ Ωl, h ∈ H (13)

ρ�i,j,h ≥ (ρi,j,h+1 − ρi,j,h) ∀i, j ∈ Ωl, h ∈ H (14)
ρ�i,j,h ≥ (ρi,j,h − ρi,j,h+1) ∀i, j ∈ Ωl, h ∈ H (15)

The objective function in (3) is formulated to minimize the
total cost of losses considering the switching costs and the PV
generation revenue, while analyzing the full solar irradiance
spectrum. Constraints (4) and (5) are used to assure power
supply to each node and represent active and reactive power
flow balance equations. Equation (6) is a function of the
current magnitude and branch parameters along with the active
and reactive power flow, which determines the voltage drop
across connected lines. In equation (7), the auxiliary variable
ω is defined to be zero when the line is connected, otherwise
it can get any other value within the limits, to satisfy (6).
Equation (8) calculates the current flow magnitude through
the lines. Constraints (9) and (10) set the boundaries of the
active and reactive power flow, while (11) and (12) limit the
magnitude of the current flowing in the connected lines and
the voltage at each node respectively. Equation (13) is defined
to address the radiality of the network. However, this condition
alone is not enough to guarantee the network’s radiality.
Together with constraints (4) and (5) both conditions are met
and network radiality is guaranteed [21]. The switching status
ρ and switching coefficient ρ� impose the binary representation
of the optimization formulation. Constraints (14) and (15)
are introduced to prevent negative values being assigned to
the switching coefficient. Since single configuration per time
segment is required, the last two constraints do not account
for the different scenarios.

B. Second Order Conic Relaxation

A SMINLP optimization problem can not guarantee a con-
vergence to global solution. With recent progress of advanced
branch-and-cut technologies, mixed-integer conic solvers were
developed. By the use of conic relaxation the optimization is
made convex and convergence to optimality is assured.

In the optimization formulation, equation (8) is a non-
convex constraint. Conic relaxation is performed by relaxing
the quadratic equality as follows [22]

υi,h,s�i,j,h,s ≥ P 2
i,j,h,s +Q2

i,j,h,s

∀i, j ∈ Ωl h ∈ H, s ∈ S (16)

which is equivalent to the conic representation

(2Pi,j,h,s)
2 + (2Qi,j,h,s)

2 + (�i,j,h,s − υi,h,s)
2 ≤

(�i,j,h,s + υi,h,s)
2 ∀i, j ∈ Ωl h ∈ H, s ∈ S (17)

By replacing (8) with (17) in the optimization formulation,
a Stochastic Mixed-Integer Second Order Conic Programming
(SMISOCP) problem is obtained. If the current I2i,j,h through
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Fig. 4. Distribution grid model used for case study

Fig. 5. Total load flow profile in the distribution grid used for case study

the lines is minimized, all constraints are met. The topology
is radial and the original SMINLP is feasible, which assures
that the solution of SMISOCP represents the global optimal
solution [13].

IV. RESULTS AND ANALYSIS

A. Test System

The time segments used to address the proposed method
are assigned intervals of 1 hour for a 24 hour period. A
synthetic distribution grid network of 27 buses is used, having
one substation and equally sized PV units connected to 9
nodes shown in Fig. 4. The PV units are sparsely distributed
across the grid. Measurements of hourly load profiles of a real
distribution grid in Singapore are used as load data for each
node, shown in Fig. 5. The peak load of the distribution grid
is 83 MW, for time segment 18:00 to 19:00. The method is
assessed for different PV penetration levels from 0 - 100 %
with a step size of 20 %. Total installed PV capacity for the
case of 100 % PV penetration is set to match the peak load
profile at 83 MW. Installed PV capacity for the rest of the
cases is calculated accordingly. The probabilistic model used
for the irradiance is obtained using statistical data for a period
of 20 years. The irradiance data is sampled to 8 scenarios
per hour. However, a single day of this data is considered for



TABLE II
COMPARISON OF NUMBER OF SWITCHING ACTIONS BEFORE AND AFTER

INTRODUCING SWITCHING COST FOR 24 HOUR PERIOD

Switching cost γ = 0 γ = 50% γ = 100%

Number of switching actions 118 32 14

4 8 12 16 20 24
Hour

1

3

5

7

9

11

L
os

se
s 

(M
W

)

0% PV penetration

Baseline
Optimal

4 8 12 16 20 24
Hour

1

3

5

7

9

11

L
os

se
s 

(M
W

)

40% PV penetration

Baseline
Optimal

4 8 12 16 20 24
Hour

1

3

5

7

9

11

L
os

se
s 

(M
W

)

60% PV penetration

Baseline
Optimal

4 8 12 16 20 24
Hour

1

3

5

7

9

11

L
os

se
s 

(M
W

)

100% PV penetration

Baseline
Optimal

Fig. 6. Load flow study for grid’s losses comparison for different cases

the comparison. According to the irradiance data, shown in
Table I, the PV units are generating electricity input to the
distribution grid between 08:00 and 20:00. Hourly electricity
prices of a single day from Singapore’s wholesale market are
used for cost calculation.

The proposed method is being tested for hourly considered
grid reconfiguration, which is not the current practice for grid
operation. One of the reasons for having a rather limited
change in the grid topology is the finite number of switching
actions in the lifetime of the switching equipment, which is
rather expensive. Therefore, the switching cost (γ) is intro-
duced in the objective function, such that the proposed method
can be considered for an economically efficient and practical
application. Switching cost of a single switch action (γ) is
calculated by summing an estimated price of a switch-breaker
with installation costs adequate for Singapore. The sum is then
divided by the maximum number of switching actions in the
switch-breaker lifetime. By introducing the switching cost in
the optimization, the number of switching actions is limited
to a realistic applicable scenario. The number of switching
actions is decided within the optimization such that a cost
efficient operation is obtained, shown on Table II. Reducing
the switching cost increases the number of switching actions
for the tested period.

Two different sets with six cases each are developed. Set I is
defined as a baseline set of cases for 0 - 100 % PV penetration,
operated with a random radial network configuration. Set II
consists of cases for 0 - 100 % PV penetration, operated with
optimal radial network configuration.

TABLE III
COST ANALYSIS COMPARISON FOR BASELINE AND OPTIMAL GRID

CONFIGURATION STUDY CASES

Losses(S$)
Case baseline optimal loss reduction
0%PV 12895 7268 43.64%

20%PV 10507 6003 42.87%

40%PV 8668 4986 42.48%

60%PV 7276 4369 39.95%

80%PV 6262 3896 37.78%

100%PV 5690 3489 38.68%
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Fig. 7. Cost analysis of losses for different PV penetration level for baseline
and optimal case studies

B. Case Study Results

The SMISOCP optimization method is employed to reach
optimal radial network configuration for Set II cases. A load
flow study is then conveyed and analyzed. Each step of
different PV penetration levels from Set II is compared to
its equivalent case in Set I. Some of the results for different
steps are shown on Fig. 6. Significant loss reduction can be
noticed in all cases compared.

Since the loss minimization in the objective function is
defined through cost minimization, comparison in cost of
losses for all cases is conveyed for better evaluation of the
method, shown in Table III. Analyzing the cost of losses
for Set II compared to Set I demonstrates that the proposed
method is very effective and the cost minimization objective
is accomplished. The cost of the losses decreased from 37.8
% to 43.6 %. This can be considered as significantly large
cost savings when an annual cost amount of the losses is
considered.

Figure 7 and Table III can be observed to analyze the
effect on cost of losses that different levels of PV penetration
have on the distribution grid model used. By increasing the
integration of PV generation, the losses decrease. When 100
% PV penetration is reached, losses decrease by 56 % and 52
% for the baseline and optimal scenarios when compared to
the cases where no PV are present.

Even though PV with adequate design and placement can
decrease the losses, solar intermittency is a big challenge
for PV integration. Intermittent PV generation can result in
changes in feeder voltage profiles, power quality issues regard-
ing voltage fluctuations, frequent operation of voltage-control
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Fig. 8. Boxplot of hourly bus voltages for all buses for 80% PV penetration

TABLE IV
COMPUTATIONAL PERFORMANCE ANALYSIS FOR HOURLY OPTIMIZATION

FOR 24 HOURS FOR APPROXIMATE AND OPTIMAL SOLUTIONS

Approximate Solution Optimal Solution
Solving Time Time (s) Opt gap (%) (s) Opt gap (%)

average 2.34 0.68 18 0.01

minimum 0.3 0.84 4.4 0.01

maximum 15.9 0.25 60.8 0.01

and regulation devices, overcurrent and overvoltage protection
issue and challenges regarding reliability and operation of the
system [23]. Besides the main objective being loss reduction,
the proposed optimization method has another benefit of
addressing the voltage issues. It can enhance the voltage
profile by limiting the voltage fluctuations, thus, smoothing the
voltage peaks and drops. Enhancement in the voltage profile
is reached for all levels of PV penetration for all analyzed
cases. A single case result is shown in Fig. 8. Voltage profile
enhancement provides better quality of power supply and more
importantly, increases grid reliability and stability.

C. Computational Performance

The SMISOCP optimization is programmed in GAMS,
using MOSEK as a solver [24]. The test is carried out on
an Intel Core i7 CPU 2.60 GHz with 8 GB of RAM.

The computational performance of the optimization method
is analyzed on a single hour reconfiguration, so that reference
values for comparison to other available methods are obtained.
Reconfiguration optimization is computed for each hour of
the 24 hour period. An average solving time for a single-hour
reconfiguration is obtained. The solving time can be signifi-
cantly influenced by the level of accuracy, defined through the
optimality gap tolerance [11]. The optimality gap represents
the maximum distance to the global optimum solution. Default
optimality gap for MOSEK to declare an integer solution as
optimal is 0.01%. The approximate solutions are defined as
the initial solutions obtained by the solver. The optimality
gap for the initial solutions is in the range of 0.22 - 1.72 %.
Table IV shows the computational performance analysis for
both optimal and approximate solutions. The average solving

time to obtain an initial solution is 2.34 sec with an average
optimality gap of 0.68 %, which can be considered a very fast
solution with great accuracy. In 77.08 % of the single hour
reconfiguration cases, the solving time is under 1 sec. The
optimal solution is obtained in average of 18 sec, with 70.83
% of the cases being solved under 20 sec, which can still be
considered a fast solution for the reconfiguration problem.

Different time periods for grid reconfiguration can be used
in the proposed method. However, the number of branches in
the scenario tree created by the solver exponentially increases
by increasing the analyzed reconfiguration period. Therefore,
solving a period of 24 hours as a single reconfiguration
problem requires excessive computational power. Hence, it is
of practical interest that the 24 hour period is broken down
into smaller periods, defined with respect to the complexity
and size of the grid. In this way the optimal distribution
grid configuration for the analyzed period of 24 hours can
be reached in a more time-efficient way.

V. CONCLUSION

In this paper, we presented a stochastic optimization
method through distribution grid reconfiguration. A proba-
bilistic model of distributed PV generation was considered as
an alternative to solar irradiance point forecast. A case study
considering up to date grid data measurements, switching costs
and prices was used to evaluate the proposed method. Analysis
of the results show that the method is very effective and cost
efficient. The proposed strategy provides optimal operation for
the modern grids. Having cost effective operation of a grid
as main priority, the method offers significant cost savings by
notably reducing the losses. Different levels of PV penetration
are analyzed, which gives a better picture of the potential of
PV in future distribution grids. The optimization offers an
operation of the grid within preset limits of the voltages and
currents in all nodes and lines. This makes the model to be
considered as a possible mechanism to enhance the voltage
profile and control the feeder power flow. This method can
offer improvements in grid reliability and stability, which is
considered an essential step towards seamless integration of
PV in the future smart grid.

VI. FUTURE WORK

The proposed method considers a different approach when
compared to current practice of reconfiguration methods. This
can influence the electrical behavior of the distribution system.
Given the high dynamicity of configuration changes, the
voltage stability is to be analyzed in depth through variety
of voltage stability indices.

The method has proved to be very cost effective and time-
efficient when tested on a small scale network. The complexity
of the reconfiguration problem is to increase when real large
distribution systems are considered. Future work is to estimate
the cost benefits of loss reduction and the computational per-
formance when dealing with large distribution grids. Different
reconfiguration periods and optimality gaps are to be tested



in order to find an appropriate setup of the reconfiguration
optimization for grids with different complexity.
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